

Coastal and Submerged Vegetation Workgroup

NROC Meeting - May 15, 2025

Sintra Reves-Sohn and Brian Yellen

Outline

- 1. Workgroup overview
- 2. Marsh geomorphology and depth models
- 3. Upcoming work "isoscape" project
- 4. Discussion addressing knowledge gaps

1. Coastal Vegetation Workgroup

NROC Coastal Vegetation Workgroup

- **Coordination**: federal and state scientists, academic scientists, and managers
- **Mapping**: Identify critical knowledge gaps and management-relevant data products
- **Processes**: Advance knowledge of Northeast US coastal sediment biogeochemical processes

Overarching goal - scientists and managers collaborating to advance coastal management practices that incorporate carbon as part of holistic resilience decision making (in progress).

Past work - detailed maps of marsh and eelgrass sediment properties.

NROC Coastal Vegetation Workgroup

Next meeting - May 28 at 10 am (Virtual). All are welcome

Alyssa Novak **Emily Shumchenia** Skye Wills Megan Tyrrell Amy Trice Gail Chmura Melisa Wong Steve Crooks Angela Brewer Ivy Mlsna Mike Bradley Steve Monteith Beth Lawrence Juliet Simpson Mike McHugh Susan Adamowicz **Beverly Johnson** Kalle Matso Nick Napoli Sylvia Troost Brian Yellen Kevin Kroeger Pam Morgan Trevor Mattera Chris Elphick Kristen Puryear Peter Edwards Zamir Libohova Claire Enterline Maggie Payne Phil Colarusso Erin Rooney David Burdick Rob Tunstead Ekundayo Adeleke Meagan Eagle Dennis Deziel Megan Christian Robert Vincent

Past work - marsh and eelgrass sediment properties

Salt marsh organic content

Eelgrass carbon stocks

Past work - publications

Region 1 The Blue Carbon Reservoirs from Maine to Long Island, NY

March 2023

www.epa.gov/region1

JGR Biogeosciences

RESEARCH ARTICLE 10.1029/2024JG008254

Key Points:

- Optical remote sensing captures ecogeomorphic drivers of soil organic carbon (SOC) spatial variability in salt marshes
- Remote sensing indices capture SOC variability with image acquired at high

Blue Carbon Mapping Using Temporally Optimized Satellite Remote Sensing Imagery: A Regional Study of Northeast US Salt Marshes

Wenxiu Teng¹, Qian Yu¹, Brian Yellen¹, Bonnie Turek², and Jonathan D. Woodruff¹

¹Department of Earth, Geographic, and Climate Sciences, University of Massachusetts Amherst, Amherst, MA, USA, ²U.S. Fish and Wildlife Service, Gulf of Maine Coastal Program, Falmouth, ME, USA

JGR Earth Surface

RESEARCH ARTICLE 10.1029/2024JF007676

Key Points:

 Geomorphic position within a marsh plays a key role in soil development and carbon content, supporting carbon mapping at fine recolutions

Modeling Spatial Distributions of Salt Marsh Blue Carbon Using Morphometric Parameters From Lidar

B. Turek^{1,2}, W. Teng¹, Q. Yu¹, B. Yellen¹, and J. Woodruff¹

¹Department of Earth, Geographic, and Climate Sciences, University of Massachusetts Amherst, Amherst, MA, USA, ²U.S. Fish and Wildlife Service, Gulf of Maine Coastal Program, Falmouth, ME, USA

2. Recent work: Geomorphic controls on marsh depth

Critical knowledge gap: depth of salt marshes in Northeast US

Meg, Dylan, and Sintra measuring peat thickness of a salt marsh on Cape Cod, MA

Carbon Density with Depth Coastal Carbon Network Carbon Density (gC/cc) 0.02 0.04 0.06 0.08 Quantiles 0 10th 25th Median 75th 100 Uepth (cm) 90th Carbon density 200 is fairly consistent with depth

At last NROC presentation: geomorphic conceptual diagram, data collection, preliminary findings

Massachusetts

Maine

<u>TB > 2.5 m</u>

TR < 2.5 m

Example probe locations

Goose Rocks, Kennebunkport, ME Filled Embayment and Back Barrier

Bluefish River, Duxbury, MA **Drowned River Valley**

Depth to	° 0-1	o 1-2	0 2-3
refusal (m)	🔴 3 - 4	4 - 4.9	4.9 +

Since last presentation: compared modeling strategies

Modeling depths: Interpolation vs. Contour Example: Quivett Creek, Dennis, Cape Cod, MA

Root Mean Squared Error for Interpolation vs. Contour Models

*Back barrier was averaged, not contoured

Since last presentation: explored depth as function of geomorphic setting

Geomorphic Type

3. Upcoming work

Sequestration Viewer

Andy Atallah, UMass Amherst

Sequestration Viewer

+ + - -				
	0 Sandy Neck, Barnstable, Barnstable 미 ^ ×		PRO UP	
and works and	Parcel address	0 SANDY NECK, BARNSTABLE		
LAN & A	City	BARNSTABLE		
CALLET -	Area of salt marsh (m ²)	443,235.46	1 6	
	Carbon sequestration (MTCO ₂ /yr)			
139.3 MTCO2 = 30 cars annual emissions				

2025-2026 - Northeast US "Coastal Isoscape"

2025-2026 - Northeast US "Coastal Isoscape"

10 cm, 480 cc, BD 🖌 LOI 🖌

2025-2026 - Northeast US "Coastal Isoscape"

Sources of sediment (and carbon) to the Northeast coast

Organogenic

Minerogenic

4. Knowledge gap discussion

2025 and Beyond - Knowledge Gaps

- Conservation and restoration decisions
- Dredging, sediment disposal, thin layer placement
- Fluxes in gas and dissolved forms

Acknowledgements:

Funding - NROC

Collaborators (UMass): Andy Atallah, Melissa Rymaszewski

Thank you to workgroup members across the Northeast US

Brian Yellen, State Geologist, byellen@umass.edu

Sintra Reves-Sohn, PhD Candidate, <u>srevessohn@umass.edu</u>

