RMAT Responsibilities

- Conduct quarterly meetings, annual plan reviews, post-disaster reviews & 5-year plan review & updates
- Track & facilitate completion of annual implementation updates for hazard mitigation & climate adaptation actions
- Ensure plan incorporates new data as they become available
- Provide outreach, technical assistance, stakeholder engagement & other educational services
- Coordinate collaborative partnerships & active engagement of key stakeholders
- Support incorporation of plan into other state plans & programs
RMAT Project: Climate resilience design standards & guidelines

- Consistent standards for using climate projection data in design of State projects with physical assets
- Guidelines with best practices for implementing climate resilience design standards
- Web-tool for agencies that provides a climate risk output (based on exposure & criticality)
Project Timeline

Stakeholder Engagement Legend

- Working Groups
- Technical Advisory Group Workshop (TAG)
- Public Comment Period
- Web-Based Tool Training
Project Timeline

Stakeholder Engagement Legend

- Working Groups
- Technical Advisory Group Workshop (TAG)
- Public Comment Period
- Web-Based Tool Training

CLIMATE RESILIENCE STANDARDS
GUIDELINES ON BEST PRACTICES AND APPLYING STANDARDS
RESILIENCE EVALUATION METRIC FOR CAPITAL PLANNING
WEB-BASED TOOL
Figure 1: Draft Project Overview Showing the Project Inputs and Outputs for the Climate Resilience Design Standards Tool (in blue) and Supplemental Resources for the Climate Resilience Design Guidelines (in orange)
Figure 1. Draft Project Overview Showing the Project Inputs and Outputs for the Climate Resilience Design Standards Tool (in blue) and Supplemental Resources for the Climate Resilience Design Guidelines (in orange).
Figure 1. Draft Project Overview Showing the Project Inputs and Outputs for the Climate Resilience Design Standards Tool (in blue) and Supplemental Resources for the Climate Resilience Design Guidelines (in orange).
Figure 1. Draft Project Overview Showing the Project Inputs and Outputs for the Climate Resilience Design Standards Tool (in blue) and Supplemental Resources for the Climate Resilience Design Guidelines (in orange).
Figure 1. Draft Project Overview Showing the Project Inputs and Outputs for the Climate Resilience Design Standards Tool (in blue) and Supplemental Resources for the Climate Resilience Design Guidelines (in orange).
Massachusetts Coast Flood Risk Model
<table>
<thead>
<tr>
<th>Annual Probability</th>
<th>Return Period (yrs)</th>
<th>Cumulative Probability (P_e) of 1 or more events occurring in:</th>
<th>10-yr period</th>
<th>25-yr period</th>
<th>50-yr period</th>
<th>100-yr period</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>1</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>50%</td>
<td>2</td>
<td>99.9%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>30%</td>
<td>3.33</td>
<td>97.2%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>25%</td>
<td>4</td>
<td>94.4%</td>
<td>99.9%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>20%</td>
<td>5</td>
<td>89.3%</td>
<td>99.6%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>10%</td>
<td>10</td>
<td>65.1%</td>
<td>92.8%</td>
<td>99.5%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>5%</td>
<td>20</td>
<td>40.1%</td>
<td>72.3%</td>
<td>92.3%</td>
<td>99.4%</td>
<td></td>
</tr>
<tr>
<td>2%</td>
<td>50</td>
<td>18.3%</td>
<td></td>
<td>39.7%</td>
<td>63.6%</td>
<td>86.7%</td>
</tr>
<tr>
<td>1%</td>
<td>100</td>
<td>9.6%</td>
<td></td>
<td>22.2%</td>
<td></td>
<td>39.5%</td>
</tr>
<tr>
<td>0.5%</td>
<td>200</td>
<td>4.9%</td>
<td></td>
<td>11.8%</td>
<td>22.2%</td>
<td>39.4%</td>
</tr>
<tr>
<td>0.2%</td>
<td>500</td>
<td>2.0%</td>
<td></td>
<td>4.9%</td>
<td>9.5%</td>
<td>18.1%</td>
</tr>
<tr>
<td>0.1%</td>
<td>1000</td>
<td>1.0%</td>
<td></td>
<td>2.5%</td>
<td>4.9%</td>
<td>9.5%</td>
</tr>
</tbody>
</table>

$$P_e = 1 - \left[1 - \frac{1}{T}\right]^n$$

where:
- $T =$ return period
- $n =$ # years in period
Figure 1. Draft Project Overview Showing the Project Inputs and Outputs for the Climate Resilience Design Standards Tool (in blue) and Supplemental Resources for the Climate Resilience Design Guidelines (in orange)
RMAT SOP to Assess Coastal Design Criteria

Given Standards Output from Tool: Planning Horizon (2030, 2050, 2070, 2100); Recurrence Interval (20-yr, 50-yr, 100-yr, 200-yr, 500-yr, 1000-yr)

Current Approach\(^2\): Fill out request form\(^4\) based on required design criteria provided from worksheet and/or tool. Worksheet will provide the design criteria needed as well as the recommended target design return period and planning horizon. The worksheet may also provide an intermediate design return period if valid.

Future Approach\(^2\): Navigate to MC-FRM website or ResilientMA.org and download required design criteria data.

Legends
- Data Gathering
- Calculation steps
- Design Criteria
- Existing practice

Footnotes:
2. Future Approach indicates steps following release of MC-FRM website and/or expanded standardized data set.
3. DFEs = Design Flood Elevations
4. See attached request form
Figure 1. Draft Project Overview Showing the Project Inputs and Outputs for the Climate Resilience Design Standards Tool (in blue) and Supplemental Resources for the Climate Resilience Design Guidelines (in orange).