New Hampshire Coastal Flood Risk Summary
Part II: Guidance for Using Scientific Projections

NROC Coastal Resilience Networking Session
November 12, 2020

Presented by:
Kirsten Howard & Nathalie DiGeronimo
NHDES Coastal Program
New Hampshire Coastal Flood Risk Summary

Background & Context

Part I: Science
Released August 2019
https://scholars.unh.edu/ersc/210/

Part II: Guidance for Using Scientific Projections
Released March 2020
https://scholars.unh.edu/ersc/211/
Part II: Guidance for Using Scientific Projections

Step-by-Step Approach

1. Define project goal, type, location, & timeframe(s)
2. Determine tolerance for flood risk
3. Select & assess relative sea-level rise (RSLR)
4. Identify & assess RSLR-adjusted coastal storms
5. Identify & assess RSLR-induced groundwater rise
6. Identify & assess projected extreme precipitation
7. Assess cumulative risk & evaluate adaptation options
Step 1. Define Project Goal, Type, Location, & Timeframes

Step 1.1 | Define the project goal and project type

Step 1.2 | Define and inventory the project area

Step 1.3 | Define the timeframe(s) for the project

Example:

- **Project goal:** Build a new hospital
- **Useful life:** 100 years (2120)
- **Project type:** Site-specific
- **Incremental action point:** 30 years (2050)
Step 2. Determine Tolerance for Flood Risk

Step 2.1 | Identify project characteristics that influence tolerance for flood risk
Step 2.2 | Determine tolerance for flood risk based on project characteristics

The willingness of decision makers to accept a higher or lower probability of flood impacts, based on relevant project characteristics such as:

- project value or replacement cost
- capacity to adapt
- importance for public function or safety
- sensitivity to inundation

Example:
Step 2. Determine Tolerance for Flood Risk

<table>
<thead>
<tr>
<th>Description</th>
<th>HIGH TOLERANCE FOR FLOOD RISK</th>
<th>MEDIUM TOLERANCE FOR FLOOD RISK</th>
<th>LOW TOLERANCE FOR FLOOD RISK</th>
<th>VERY LOW TOLERANCE FOR FLOOD RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Decision makers have a High tolerance for flood risk to the project</td>
<td>Decision makers have a Medium tolerance for flood risk to the project</td>
<td>Decision makers have a Low tolerance for flood risk to the project</td>
<td>Decision makers have a Very Low tolerance for flood risk to the project</td>
</tr>
</tbody>
</table>

POSSIBLE PROJECT CHARACTERISTICS

Tolerance for flood risk will depend on the mix and importance of these project characteristics.

<table>
<thead>
<tr>
<th></th>
<th>HIGH TOLERANCE FOR FLOOD RISK</th>
<th>MEDIUM TOLERANCE FOR FLOOD RISK</th>
<th>LOW TOLERANCE FOR FLOOD RISK</th>
<th>VERY LOW TOLERANCE FOR FLOOD RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low value or cost</td>
<td>Low value or cost</td>
<td>High value or cost</td>
<td>Very high value or cost</td>
<td></td>
</tr>
<tr>
<td>Easy or likely to adapt</td>
<td>Moderately easy or somewhat likely to adapt</td>
<td>Difficult or unlikely to adapt</td>
<td>Very difficult or very unlikely to adapt</td>
<td></td>
</tr>
<tr>
<td>Little to no implications for public function and/or safety</td>
<td>Moderate implications for public function and/or safety</td>
<td>Substantial implications for public function and/or safety</td>
<td>Critical implications for public function and/or safety</td>
<td></td>
</tr>
<tr>
<td>Low sensitivity to inundation</td>
<td>Moderate sensitivity to inundation</td>
<td>High sensitivity to inundation</td>
<td>Very high sensitivity to inundation</td>
<td></td>
</tr>
</tbody>
</table>

PROJECT EXAMPLES

<table>
<thead>
<tr>
<th>PLANNING</th>
<th>Regulatory</th>
<th>Site-Specific</th>
<th>Corresponding ASCE 24-14.15 Flood Design Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updating a local master plan Developing a capital improvement plan</td>
<td>Updating a floodplain zoning ordinance Updating a subdivision site plan regulation Updating state alteration of terrain rules</td>
<td>Designing a walking path; Siting a temporary or accessory structure; Upgrading a minor storage facility</td>
<td>1 2 3 4</td>
</tr>
</tbody>
</table>

CORRESPONDING ASCE 24-14.15 FLOOD DESIGN CLASS

<table>
<thead>
<tr>
<th></th>
<th>LOWER MAGNITUDE, HIGHER PROBABILITY</th>
<th>2</th>
<th>3</th>
<th>HIGHER MAGNITUDE, LOWER PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECOMMENDED COASTAL FLOOD RISK PROJECTIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 3. Select & Assess RSLR

Step 3.1 | Select RSLR estimate(s) for the project

Example:

Useful life:
100 years (2120)

Incremental action point:
30 years (2050)

Tolerance for flood risk:
Very Low

Table:

<table>
<thead>
<tr>
<th>TIMEFRAME</th>
<th>HIGH TOLERANCE FOR FLOOD RISK</th>
<th>MEDIUM TOLERANCE FOR FLOOD RISK</th>
<th>LOW TOLERANCE FOR FLOOD RISK</th>
<th>VERY LOW TOLERANCE FOR FLOOD RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td>2030</td>
<td>0.7</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>2040</td>
<td>1.0</td>
<td>1.2</td>
<td>1.5</td>
<td>1.6</td>
</tr>
<tr>
<td>2050</td>
<td>1.3</td>
<td>1.6</td>
<td>2.0</td>
<td>2.3</td>
</tr>
<tr>
<td>2060</td>
<td>1.6</td>
<td>2.1</td>
<td>2.6</td>
<td>3.0</td>
</tr>
<tr>
<td>2070</td>
<td>2.0</td>
<td>2.5</td>
<td>3.3</td>
<td>3.7</td>
</tr>
<tr>
<td>2080</td>
<td>2.3</td>
<td>3.0</td>
<td>3.9</td>
<td>4.5</td>
</tr>
<tr>
<td>2090</td>
<td>2.6</td>
<td>3.4</td>
<td>4.6</td>
<td>5.3</td>
</tr>
<tr>
<td>2100</td>
<td>2.9</td>
<td>3.8</td>
<td>5.3</td>
<td>6.2</td>
</tr>
<tr>
<td>2110</td>
<td>3.3</td>
<td>4.4</td>
<td>6.1</td>
<td>7.3</td>
</tr>
<tr>
<td>2120</td>
<td>3.6</td>
<td>4.9</td>
<td>7.0</td>
<td>8.3</td>
</tr>
<tr>
<td>2130</td>
<td>3.9</td>
<td>5.4</td>
<td>7.9</td>
<td>9.3</td>
</tr>
<tr>
<td>2140</td>
<td>4.3</td>
<td>5.9</td>
<td>8.9</td>
<td>10.5</td>
</tr>
<tr>
<td>2150</td>
<td>4.6</td>
<td>6.4</td>
<td>9.9</td>
<td>11.7</td>
</tr>
</tbody>
</table>
Step 3. Select & Assess RSLR

Step 3.2 | Assess RSLR impacts to the project

MAPPING SEA-LEVEL RISE

There are many publicly available datasets and visualization tools that can help visualize possible sea-level rise and other coastal flood impacts. The New Hampshire Sea-Level Rise, Storm Surge, and Groundwater Rise Mapper (Sea-Level Rise Mapper) is intended to provide easy access to future coastal inundation scenarios. The Mapper is a screening tool for planning purposes, and sites of interest should be further evaluated with a site-based survey. Data on the Mapper are provided by New Hampshire GRANIT.

ACCESS THE MAPPER: www.tinyurl.com/slrmapper
Step 4. Identify & Assess RSLR-Adjusted Coastal Storms

Step 4.1 | Identify RSLR-adjusted Design Flood Elevation (DFE)
Step 4.2 | Assess RSLR-adjusted coastal storm impacts to the project

Example:

Tolerance for flood risk: Very Low
RSLR estimate: 8.3 feet by 2120
BFE: 8 feet NGVD
RSLR-adjusted DFE = 18.3 feet NGVD
8 feet (BFE) + 2 feet (freeboard) + 8.3 feet (RSLR)
Step 5. Identify & Assess RSLR-Induced Groundwater Rise

Step 5.1 | Identify RSLR-induced groundwater rise for the project
Step 5.2 | Estimate depth to present-day and future groundwater
Step 5.3 | Assess RSLR-induced groundwater rise impacts to the project

Example:

- RSLR estimate: 8.3 feet by 2120
- GWR estimate (from SLR Mapper): 5 feet
- Present-day depth to SHWT: 4 feet

RSLR-adjusted depth to SHWT = -1 feet

4 feet (present-day depth) – 5 feet (GWR estimate)
Step 6. Identify & Assess Projected Extreme Precipitation

Step 6.1 | Account for projected increases in extreme precipitation
Step 6.2 | Assess projected extreme precipitation impacts to the project

Example:

Tolerance for flood risk: Very Low

Present-day rainfall estimate (24-hour, 10-year event): 4.9 inches

Projected rainfall estimate (24-hour, 10-year event) = 5.9 inches

4.9 inches (present-day estimate) x 1.2

<table>
<thead>
<tr>
<th>PROJECTED EXTREME PRECIPITATION ESTIMATE =</th>
<th>HIGH TOLERANCE FOR FLOOD RISK</th>
<th>MEDIUM TOLERANCE FOR FLOOD RISK</th>
<th>LOW TOLERANCE FOR FLOOD RISK</th>
<th>VERY LOW TOLERANCE FOR FLOOD RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Best available precipitation data) x (1.15)</td>
<td>(Best available precipitation data) x (1.15)</td>
<td>(Best available precipitation data) x (>1.15)</td>
<td>(Best available precipitation data) x (>1.15)</td>
<td>(Best available precipitation data) x (>1.15)</td>
</tr>
</tbody>
</table>
Step 7. Assess Cumulative Risk & Evaluate Adaptation Options

| Step 7 Table A. Framework of Types of Action to Manage Coastal Flood Risk. |
|---|---|---|---|---|
| **NO ACTION** | **AVOID** | **ACCOMMODATE** | **RESIST** | **RELOCATE** |
| **IN OTHER WORDS, RECOGNIZE RISK AND...** | Don’t change anything! | Prioritize investment out of the water’s way | Live with the water | Keep the water out | Move assets or facilitate migration |
| **DECISION MAKERS MIGHT CHOOSE THIS ACTION CATEGORY BECAUSE...** | | | | |
| **COASTAL FLOOD RISK IS:** | Very Low to Low | Very Low | Moderate | High | High |
| **AND/OR** | | | |
| **TOLERANCE FOR FLOOD RISK IS:** | High | Medium to Very Low | Medium | Low to Very Low | Low to Very Low |

Example:

![Example Image]

Tolerance for flood risk: Very Low
New Hampshire Coastal Flood Risk Summary
Possible Applications

- Property-specific decisions
- Neighborhood scale assessments
- Local plans, regulations, capital investments
- State permitting and best practices

PROJECT
For the purposes of this Guidance, the term “project” refers broadly to any private, local, state, and federal planning, regulatory, or site-specific efforts that should consider and incorporate coastal flood risk projections. Examples of applicable private, local, state, or federal projects include, but are not limited to:

Planning projects: master plans; hazard mitigation plans; post-disaster redevelopment/relocation/recovery plans; emergency operations and evacuation plans; capital improvement plans; transportation improvement plans; economic development plans; open space plans; etc.

Regulatory projects: zoning ordinances; site plan and/or subdivision regulations; wetlands and shoreland regulations; alteration of terrain regulations; waste management regulations; etc.

Site-specific projects: new construction and redevelopment or relocation of buildings and structures; road, bridge, culvert construction, maintenance, or relocation; shoreline stabilization projects; wetland restoration; land conservation; etc.
King Tide NH 2020 Contest

November 14-17

Visit nhcaw.org/kingtidenh2020 for all you need to know about how to win and help us prepare for future sea-level rise. Get ready to grab your cameras to capture the King Tide.
New Hampshire Coastal Flood Risk Summary

Contact Us

Kirsten Howard
Coastal Resilience Coordinator
NHDES Coastal Program
(603) 559-0020
kirsten.howard@des.nh.gov

Nathalie Morison DiGeronimo
Resilience Project Manager
NHDES Coastal Program
(603) 559-0029
nathalie.morison@des.nh.gov

Funding for this effort was provided, in part, by the National Oceanic and Atmospheric Administration Office for Coastal Management under the Coastal Zone Management Act in conjunction with the New Hampshire Department of Environmental Services Coastal Program.