SUBTIDAL BENTHIC HABITAT MAPPING IN MIDCOAST MAINE

Claire Enterline, Rob Hallinan, Ivy Ozmon
PROGRAM OBJECTIVES

• Expand multibeam coverage for Maine’s coastal waters/update nautical charts
• Refine existing seafloor substrate/textural maps
• Investigate sand & gravel resources for beach nourishment
• Classify and map Maine’s subtidal benthic habitat and inventory biological communities
• Assess nearshore sediment transport
VIDEO ANALYSIS GOALS

• Identify flora and fauna (and/or evidence of their presence).
• Quantify flora and fauna presence at documented timestamps for reference.
• Compare video evidence of habitat with grab sample and bathymetric data.
• Data remains consistent with that of CMECS.
Benthic Sampling Methods
ANALYSIS METHODS

Adopted RI video analysis methods and worksheets

• Individual Count
 OR
• Cover Rank
 OR
• Presence Rank

Field of view represents species identified a specific distance from the camera (given same 1-5 rank).

<table>
<thead>
<tr>
<th>Cover Rank</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><1% of screen</td>
</tr>
<tr>
<td>2</td>
<td>1 to <30% of screen</td>
</tr>
<tr>
<td>3</td>
<td>30 to <50% of screen</td>
</tr>
<tr>
<td>4</td>
<td>50 to <90% of screen</td>
</tr>
<tr>
<td>5</td>
<td>>90% of screen</td>
</tr>
</tbody>
</table>

Presence columns indicate whether biota was witnessed in video.

No Value: Biota absent in video.

1: Biota present in video.

*If a value of 1 is recorded at a given timestamp, it will not be recorded again throughout video if seen again.

Columns not labeled with "Cover Rank" or "Presence" record number of biota present at given timestamp.
EXAMPLE

Green filamentous algae

Red filamentous algae

Hydroid

Yellow sponge

Red encrusting algae

Laminaria (brown blade algae)
APPROACH

- For species that cannot be individually counted, a percent cover rank is determined.
 - GIMP program used to count pixels to determine percent cover.
- For species that are consistently too numerous to count, a simple mark of presence is recorded.
- Consistency in identification will help correct any misidentifications.
EXAMPLE PERCENT COVER WITH GIMP
LIMITATIONS

• Inaccurate fish identification due to distance from camera.
• Inability to identify species with certainty due to lack of camera detail.
• Inaccurate fish counts due to inability to track fish and distance from camera.
• Inaccurate identification due to rate of camera ascent and descent.
RECOMMENDATIONS

VIDEO ACQUISITION

• Possibility of a lever arm.
• Consistent camera housing and lighting.

ANALYSIS

• Have a second analyst review the videos.
• Algae functional groups should be used as an unidentifiable species column.
• Need to determine the ability to compare counts, coverage and presence/absence
CMECS RECOMMENDATIONS

Co-occurring Elements

• The class, subclass, group, and community should be identified to more accurately illustrate the habitat

• At what point (biomass, percent cover, etc.) is the cutoff for a co-occurring element? How abundant does it need to be to be considered a co-occurring element? Should there only be so many co-occuring elements?

Infauna and Epifauna

• How should infauna presence be determined when there is many more of one species while the other has far fewer but greater biomass?

• Should be separate CMECS categories

Classification

• The biotic community examples listed vary in their level of taxonomic classification. Communities should be recorded to the same taxonomic level when possible.

• The term "bed" inaccurately describes many of the communities seen in the video and infaunal analyses. A dominating biomass during the infaunal analysis may be just one or two individuals.

• Should everything I have seen throughout the video analysis end up in the biotic component of CMECS? The timestamp video analysis is used to capture the presence of everything seen throughout the videos. This shouldn’t be the case for CMECS. CMECS should be used to illustrate the dominant aspects of the habitat.

• How do I classify a co-occurring element when, for example, there are many polychaete species present but no species is dominant? A branching decision tree with increasing species specificity could be used.