Living Shorelines for New Hampshire

David Burdick, Jackson Estuarine Lab Tom Ballestero, Civil Engineering, Gregg Moore, Jackson Estuarine Lab University of New Hampshire

University of New Hampshire

What are some of the dominant coastal habitats?

Salt Marshes Seagrass Beds Coral Reefs Mudflats Rocky Intertidal Shore Shellfish Reef Mangrove Swamp Barrier Beach/Dune Systems

Why?

- 1) Physical forces (wind, tides) interact with internal process to support a negative feedback system.
- 2) The result is a recognizable ecosystem that has ecological functions and human values.

Conceptual Model of Salt Marsh Processes

http://www.pwrc.usgs.gov/set/).

Surface Elevation Tables (SETs) and Marker Horizons Established . . . and Measured

SET Base

Salt marshes are among our most productive and valuable ecosystems

Plants support food webs Secondary production Plant structure for habitat Support of biodiversity Protection from flooding Protection from coastal erosion

Removal of sediments & excess nutrients Aesthetic, Recreational & Educational values Self-sustaining ecosystems Long term carbon storage

The Case for Building Salt Marshes into Living Shorelines

- Loss of 30% of historical salt marshes
- Future for marshes is not bright SLR/CC
- Salt marshes and peat develop slowly as sea levels rise
 most marshes are over 1,000 years old
- Created marshes erode EVEN if shoreline protected
 - 1993 salt marsh creation lost 20% of area in five years in North Mill Pond
- Salt marshes protect, survive and heal following storms
 - Gittman et al. 2014

THE SALT MARSH SQUEEZE

Marsh migration + Shoreline stabilization = salt marsh squeeze

From Kirsten Howard, NHCP

Local Living Shoreline Projects

Coastal Habitat Restoration Team: Burdick, Moore, Grizzle, Eberhardt, Ashcraft, Ballestero and Technicians university of New Hampshire and Students COASTAL HABITAT

Baid Head

Challenges of northern shoreline projects

- Low light
- Short growing season
- Large tidal range
- Ice

Ranges of Options

GREEN - SOFTER TECHNIQUES

GRAY - HARDER TECHNIQUES

Living Shorelines

VEGETATION ONLY -Provides a buffer to upland areas and breaks small waves, Suitable for low wave energy environments.

EDGING -Added structure holds the toe of existing or vegetated slope in place. Suitable for most areas except high wave energy environments.

SILLS -Parallel to vegetated shoreline, reduces wave energy, and prevents erosion. Suitable for most areas except high wave energy environments.

BREAKWATER -(vegetation optional) - Offshore structures intended to break waves, reducing the force of wave action, and encourage sediment hardened shoreline accretion. Suitable for most areas.

Coastal Structures

REVETMENT -Lays over the slope of the shoreline and protects it from erosion and waves. Suitable for sites with existing structures.

BULKHEAD -Vertical wall parallel to the shoreline intended to hold soil in place. Suitable for high energy settings and sites with existing hard shoreline structures.

Guidance for Considering Use of Living Shorelines, NOAA 2015

VEGETATION ONLY

SAGE, 2016, Natural and structural measures for shoreline stabilization

Mill Pond Way berm removal, North Mill Pond, Portsmouth, NH

Brewster Street Mitigation on North Mill Pond (Stantec)

North Mill Pond at Brewster St. Mitigation 2016

Pre-existing

Fill to Designs Grades

Plant With Plugs

Final Product

Winter Can Be Cruel

Marsh built in South Mill Pond 2001, Portsmouth, in front of seawall and behind sill constructed from existing rocks on site.

SAGE, 2016, Natural and structural measures for shoreline stabilization

Two Case Studies: Living Shoreline Marshes with Sills

- 1) Cutts Cove, Portsmouth
 - Designed as restoration of salt marsh
 - Approach is to partially remove rip-rap wall
 - Sill provides a 'climate ready' feature for 2060
 - 2) Wagon Hill Farm, Durham
 - Designed to stop erosion
 - Also restores damaged salt marsh
 - Sill provides erosion resistant edge and 'climate ready' feature; TBZ allows for marsh migration

Cutts Cove

Rip Rap Armor at Cutts Cove

Sarah Mildred Long Bridge Replacement Mitigation Plan January 2014

Tides and existing marshes in Cutts Cove

Proposed Cutts Profile

Cutts Profiles and Ecosystems

Distance from mudflat (ft)

Tides and existing marshes in Cutts Cove

Construction Sequence

Clear and Grub

Flatten rip-rap wall and build stone edge Backfill with sandy silt to elevation

Planting and Maintenance

Measures of Success

- Monitoring
 - Erosion
 - Plant establishment and growth
 - Animal use of habitat
- Maintenance

Pre-restoration Fish Sampling

Case Study #2: Wagon Hill Farm

Change from 1992 to 2015

Wagon Hill Farm Issues and Data Collection

Potential Causes of Erosion

- •Waves
- Increased foot /pet traffic
- •Decreased light
- Increased Sea Level
- •lce Damage
- •Plant disease or herbivory
- Lack of Sediment supply
- •Eroded shoreline promotes erosion cycle

Stormwater

Data Collection

- [to eliminate potential causes and inform design]
- •High intensity water levels
- •Wildlife cameras
- •Light meters
- •Water level recorders
- Wildlife cameras
- Observations
- •Trial structure
- •Erosion pins

Setting Erosion Pins

Foot Traffic and Boat Waves

Light can be a big issue for plants

Today

Light Reaching Marsh Surface Before and After Limbing

From 2009

Potential First Phase - Plan

Profile Type 1

SL-27 17+40

Conclusions

- Recognize limited growing season
- Difficulty increases with tidal range and physical exposure to shear stress from waves and ice
- Be aware of conditions that can reduce success: shade and animals (geese, crabs, snails, people)
- Consider management (including people management) at the landscape scale

Thank You!