Dune building projects involve the placement of compatible sediment on an existing dune, or creation of an artificial dune by building up a mound of sediment at the back of the beach. This may be a component of a beach nourishment effort or a stand alone project.

Objectives: erosion control; shoreline protection; dissipate wave energy; enhanced wildlife and shorebird habitat.

Case Study

Ferry Beach, Saco, Maine

Relatively high beach and dune erosion (approximately 3 feet per year) prompted the FBPA to undertake a dune restoration project to help protect roads and homes from flooding and erosion. Given the relatively high erosion rate, it was decided that placing sediment for restoration seaward of the existing dune would be short-lived. A secondary frontal dune ridge landward of the existing dune crest was constructed instead, allowing native vegetation to establish.

Overview of Technique

Materials

Sediment is brought in from an offsite source, such as a sand and gravel pit or coastal dredging project. Planting the dune with native, salt-tolerant, erosion-control vegetation (e.g., beach grass *Ammophila breviligulata*) with extensive root systems is highly recommended to help hold the sediments in place. Sand fencing can also be installed to trap windblown sand to help maintain and build the volume of a dune.

Habitat Components

Dunes planted with native beach grass can provide significant wildlife habitat.

Durability and Maintenance

The height, length, and width of a dune relative to the size of the predicted storm waves and storm surge determines the level of protection the dune can provide. To maintain an effective dune, sediment may need to be added regularly to keep dune's height, width, and volume at appropriate levels. The seaward slope of the dune should typically be less steep than 3:1 (base:height). Dunes with vegetation perform more efficiently, ensuring stability, greater energy dissipation, and resistance to erosion.

Design Life

Dunes typically erode during storm events. In areas with no beach at high tide, dune projects will be short lived as sediments are rapidly eroded and redistributed to the nearshore.

Ecological Services Provided

The added sediment from dune projects supports the protective capacity of the entire beach system (i.e., dune, beach, and nearshore area). Any sand eroded from the dune during a storm, supplies a reservoir of sand to the fronting beach and nearshore area. Dunes dissipate rather than reflect wave energy, as is the case with hard structures.

Unique Adaptations to NE Challenges (e.g. ice, winter storms, cold temps)

Shorter planting and construction window due to shorter growing season. Utilization of irrigation to establish plants quickly. Presence of sensitive species may require design (e.g. slope, plant density) and timing adjustments.

Project Proponent

Ferry Beach Park Association (FBPA)

Status

Completed 2009

Permitting Notes

Permit-by-Rule needed from Maine DEP

Construction Notes

An 800 foot long secondary dune was built to 1 foot above the effective FEMA 100-year BFE. A secondary dune was built because erosion of the front dune was considered too high (>3 feet per year) to have a successful project. 1,800 cy of dune-compatible sediment was delivered via truck from a local gravel pit. Construction and planting occurred in early spring. Volunteers planted native American Beach grass.

Maintenance Issues

Sand fencing was used to help trap sediment in the constructed dune, and to help maintain the seaward edge of the original dune. However, shoreline erosion has continued; as of May 2017 the restored dune has started to erode.

Final Cost

$29,000 and volunteer hours

Challenges

Trucking 90 dump-truck loads of sediment through the community. Construction and planting timing windows associated with piping plover nesting. Continued erosion.

Materials

Sediment is brought in from an offsite source, such as a sand and gravel pit or coastal dredging project. Planting the dune with native, salt-tolerant, erosion-control vegetation (e.g., beach grass *Ammophila breviligulata*) with extensive root systems is highly recommended to help hold the sediments in place. Sand fencing can also be installed to trap windblown sand to help maintain and build the volume of a dune.

Habitat Components

Dunes planted with native beach grass can provide significant wildlife habitat.

Durability and Maintenance

The height, length, and width of a dune relative to the size of the predicted storm waves and storm surge determines the level of protection the dune can provide. To maintain an effective dune, sediment may need to be added regularly to keep dune's height, width, and volume at appropriate levels. The seaward slope of the dune should typically be less steep than 3:1 (base:height). Dunes with vegetation perform more efficiently, ensuring stability, greater energy dissipation, and resistance to erosion.

Design Life

Dunes typically erode during storm events. In areas with no beach at high tide, dune projects will be short lived as sediments are rapidly eroded and redistributed to the nearshore. Designs should consider techniques that enhance or maintain the dune (e.g. sand fencing and/or vegetation to trap wind blown sand).

Ecological Services Provided

The added sediment from dune projects supports the protective capacity of the entire beach system (i.e., dune, beach, and nearshore area). Any sand eroded from the dune during a storm, supplies a reservoir of sand to the fronting beach and nearshore area. Dunes dissipate rather than reflect wave energy, as is the case with hard structures.

Unique Adaptations to NE Challenges (e.g. ice, winter storms, cold temps)

Shorter planting and construction window due to shorter growing season. Utilization of irrigation to establish plants quickly. Presence of sensitive species may require design (e.g. slope, plant density) and timing adjustments.
Dune projects may be appropriate for areas with dry beach at high tide and sufficient space to maintain dry beach even after the new dune sediments are added to the site, and can be done independently, or in conjunction with a beach nourishment project.

Regulatory and Review Agencies

Maine
- Municipal Shoreland Zoning, Municipal Floodplain, ME Dept. of Environmental Protection, ME Land Use Planning Commission, ME Coastal Program, ME Dept. of Marine Resources, ME Dept. of Inland Fisheries and Wildlife, and ME Geological Survey.

New Hampshire
- Local Conservation Commission, NH Natural Heritage Bureau, NH Department of Environmental Services (Wetlands Bureau, Shoreland Program, and Coastal Program), and NH Fish & Game Department.

Massachusetts
- Local Conservation Commission, MA Division of Fisheries and Wildlife (Natural Heritage and Endangered Species Program), MA Environmental Policy Act, and MA Office of Coastal Zone Management.

Rhode Island
- Coastal Resources Management Program.

Connecticut
- Local Planning and Zoning Commission, and CT Department of Energy and Environmental Protection.

Federal
- (for all states) U.S. Environmental Protection Agency, and U.S. Fish and Wildlife Service.

Siting Characteristics and Design Considerations

<table>
<thead>
<tr>
<th>Selection Characteristics</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES Energy State</td>
<td>Low to high</td>
</tr>
<tr>
<td>EE Existing Environmental Resources</td>
<td>Coastal beach; coastal dune; coastal bank</td>
</tr>
<tr>
<td>SR Nearby Sensitive Resources</td>
<td>All. Dune projects can be successfully designed even in the presence of sensitive resource areas. However, special consideration is needed near salt marsh, horseshoe crab spawning grounds, and other sensitive habitats. Sediment can smother plants and animals if it is eroded quickly and carried to these areas. Impacts can be minimized by placing dunes as far landward as possible and using compatible grain size. In addition, plantings may need to be thinned for dune projects in nesting habitat for protected shorebird and turtle species.</td>
</tr>
<tr>
<td>TR Tidal Range</td>
<td>Low to high</td>
</tr>
<tr>
<td>EL Elevation</td>
<td>Above MHW. Dune projects require a dry high tide beach to be successful.</td>
</tr>
<tr>
<td>IS Intertidal Slope</td>
<td>Flat to steep</td>
</tr>
<tr>
<td>BS Bathymetric Slope</td>
<td>Flat to steep</td>
</tr>
<tr>
<td>ER Erosion</td>
<td>Low to high</td>
</tr>
</tbody>
</table>

Other Characteristics

- **Grain Size**: It is important to utilize sediment with a grain size and shape compatible to the site. The percentage of sand-, gravel-, and cobble-sized sediment should match, or be slightly coarser than, the existing dune sediments. Mixed sediment dunes may be appropriate and necessary for some locations. The shape of the material is also important, especially for larger sediment, and should be rounded rather than angular.

- **Impairment Level**: Consideration should be given to invasive species, level of existing armoring, and extent of public use.

- **Climate Vulnerability**: The long-term climate vulnerability of the restored dune will be influenced by a number of factors, including what is behind the landform; if the dune/beach is backed by natural landscape, it will be able to respond naturally to storms and overwash and migrate over time. Hard landscape, such as seawalls, parking lots, roads, and buildings will prevent this movement, and may ultimately cause narrowing or disappearance of these resources.

- **Surrounding Land Use**: Shoreline armoring changes the lateral movement of sediment, thereby affecting sediment flows to nearby dunes. Therefore, any armoring adjacent to a dune restoration site needs to be taken into consideration during the planning process. Dune restoration will be most successful if it is located where the natural dune line should be and, if possible, tied into existing dunes. Dunes are not well suited for major urban centers or large port/harbor facilities because of space requirements and the level of risk reduction required.