RESILIENCE AND ADAPTATION IN NEW ENGLAND (RAINE)

AN EPA REGION 1 CLIMATE MAPPING EFFORT

BRIEFING FOR THE NORTHEAST REGIONAL OCEAN COUNCIL

MAY 21, 2015

IVY MLSNA, MLSNA.IVY@EPA.GOV

Summary of Presentation

BACKGROUND ON DEVELOPMENT OF RAINE – HOW WE GOT HERE

CAVEATS AND ASSUMPTIONS

DEMO OF RAINE

DISCUSSION

NEXT STEPS

Hurricane Sandy Debris Field

PREPARING FOR CLIMATE CHANGE LEADERS SUMMIT

Friday, Nov. 8, 2013 9:00 a.m. – 5:00 p.m. Johnson & Wales University, Harborside Campus, Providence, RI

WE INVITE YOUR PARTICIPATION during this invitation-only, Climate Leadership Summit: Strengthening New England Communities

FOLLOW UP TO THE SUMMIT

6 WORK GROUPS FORMED (FED/STATE/LOCAL/REGIONAL REPS) WORKGROUPS ARE NO LONGER ACTIVE – NE STATES ARE COLLABORATING

- A VULNERABILITY ASSESSMENTS AND PILOTS
- B STATE ROUNDTABLES
- C INTEGRATING ADAPTATION INTO BUSINESS AS USUAL AT THE MUNICIPAL LEVEL
- D DATA
- E COMMUNICATION
- F RESILIENT INFRASTRUCTURE

CAVEATS

WE CAN'T POSSIBLY CAPTURE EVERYTHING NOT THE USUAL ROLE FOR EPA – BUT WE HAVE INTERNS WE NEED KEY PARTNERS – STATES, NEP'S, RPA'S, ACADEMIC

HOW MIGHT EPA USE RAINE?

 IDENTIFY VULNERABLE BROWNFIELDS, REMEDIATION SITES, DRINKING WATER OR WASTEWATER PLANTS AND SEE IF ADAPTATION IS TAKING PLACE

TARGET TECHNICAL ASSISTANCE TO VULNERABLE AREAS WHERE
 COMMUNITIES ARE LESS ACTIVE

• FIND EXAMPLES TO SHARE WITH SELECTED PILOT COMMUNITIES AND SET UP PEER TO PEER LEARNING OPPORTUNITIES

HOW MIGHT OTHERS USE RAINE?

- COMMUNITIES JUST BEGINNING THEIR CLIMATE CHANGE ADAPTATION PLANNING MAY LOOK TO THE DATABASE FOR EXAMPLES
- LOCAL DECISION MAKERS MAY MODEL ORDINANCES AFTER ONES
 THAT HAVE ALREADY BEEN COLLECTED IN THE DATABASE
- PEER-TO-PEER LEARNING AND COMMUNICATION CUT OUT THE MIDDLE MAN

DEMOS WITH POTENTIAL USERS

WASHINGTON COUNTY REGIONAL PLANNING (NORTHERN MAINE) NEW ENGLAND MUNICIPAL SUSTAINABILITY NETWORK (NEMSN) PARTNERSHIP FOR SUSTAINABLE COMMUNITIES (EPA/DOT/HUD/FEMA/USDA) NEW ENGLAND FEDERAL PARTNERS (16 FEDERAL AGENCIES) CLIMATE ADAPTATION KNOWLEDGE EXCHANGE (CAKE) GEORGETOWN CLIMATE CENTER EPA REGION 1'S GLOBAL CLIMATE CHANGE NETWORK (GCCN) EPA'S OFFICE OF ENVIRONMENTAL INFORMATION **EPA REGIONS 2-10 RHODE ISLAND CZM** NEIWPCC A BETTER CITY

RAINE INTRANET HOME PAGE

RESILIENCE AND ADAPTATION IN NEW ENGLAND (RAINE)

About Maps Top Ten List Search Definitions Q&A Spotlights

About

New England communities are taking action to adapt to the impacts of climate change in new and creative ways. This database catalogs what is happening so we can learn from these experiences, share lessons being learned, discover how to better assist municipalities, and promote collaboration. It is a product of the New England Climate Leaders' Summit that was held in Providence, Rhode Island at Johnson & Wales University on November 8, 2013. The meeting's goal was to create collaborative action to assist New England communities in adapting to climate change. This database is populated with links to reports, plans and information found on the internet. If there is additional information you would like to add to the database, contact Ivy MIsna

The database provides information about actions that are being taken at a state, regional or community level. You can conduct basic searches and map the information, as well as conduct more advanced searches using all of the information in the database. Explore the "Definitions" tab to learn how terms are defined in the database. Below is a list of information included in the database along with a few examples of what that category includes.

- Programs: What programs have communities engaged with, for example: Community Energy Challenge or Climate Ready Estuaries
- Plans and Products: Links to: Vulnerability Assessments, Adaptation Plans, webpages as well as traditional community planning documents that directly address adaptation, such as comprehensive plans or sustainability plans
- Topics: Topics within a plan or project that describe how the impacts of climate change will affect the community, for example: cost/benefit analysis of implementation of the plan, if/how residential space will be affected by climate change or plan implementation,, or how water infrastructure could be impacted by climate change
- Impacts: Direct environmental effects of climate change. For example: extreme heat, more frequent and dramatic flooding, sustained drought periods, or increased water temperature
- Tools: Tools used during the planning process. For example: HAZUS, HEAT, flood resilience checklist
- Funding: If the plan or product was funded outside of the municipality, the funding sources are captured in the database. For example: Federal, State, or Foundations
- Partners: Other entities besides the municipality that participated or offered resources for the plan or project. For example: Federal, State, NGOs, Academics
- · Contacts: Associated with a specific document; Names, e-mail and phone

DETAILS ABOUT TOPICS, IMPACTS AND PROGRAMS

Q&A Spotlights

Definitions

Maps

Click on each category to view additional information.

Topics: Topics that are included in plans and/or products. Features are divided into six categories.

Top Ten List Search Definitions

Economic

Ecosystem

Government/Academic Planning

Infrastructure

Response

Social

Impacts: The direct environmental effects of climate change that a community might address.

Tools: Tools used during the planning process. For example: COAST, SLAMM, SLOSH.

Programs: Recognition and networking programs communities might participate in.

Impacts

Direct environmental effects of climate change

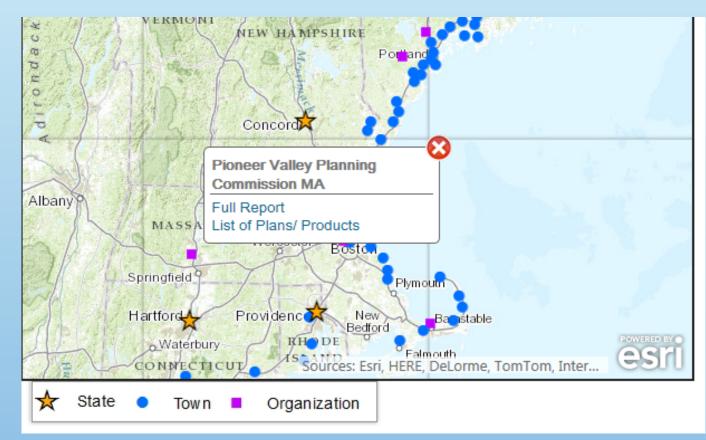
Topics

Keyword tags for topics that are included in plans and/or products. Topics are divided into six categories:

Social Economic Ecosystems Government/Academic Planning Infrastructure Response

SIMPLE ANALYSIS: MAP

RESILIENCE AND ADAPTATION IN NEW ENGLAND (RAINE)


About Maps Top Ten List Search Definitions Q&A Spotlights

Maps

Use the drop down arrow to select a subset of towns, states, or organizations that are being tracked in RAINE to map the following key features. Click on the points to view pop-ups containing links to reports.

Feature to Ma Show communities addressing Flood Zone Mapping Show communities addressing Sea Level Rise Show communities with Adaptation Plans Show communities with Vulnerability Assessments Show communities with Case Studies Montpeliero White Mountains VERMONT NEW HAMPSHIRE Portland Concord² Nashua Lowell. Albany MASSACHUSETTS Worcester Boston Springfield Plymouth Hartford Providence New Barnstable Bedford RHODE Waterbury ^O Falmouth ISLA CONNECTICU Esri, DeLorme, FAO, USGS, NOAA, EPA, NPS ☆ State Organization Town 🗖

Additional Information from maps

SIMPLE ANALYSIS: "TOP TEN" GRAPHS

About Maps Top Ten List Search Definitions Q&A Spotlights

Top Ten List

Use the drop down arrow to select a subset of the most common key features to graph. Click on the bar graph for additional information and links to reports.

elect One 10 most common Topics 10 most common Impacts Partners - -🔮 RAINE Town List - Internet Explorer 10 most common Programs 10 most common Tools RESILIENCE AND ADAPTATION Funding Sources Federal Funding Sources Communities which have Built Infrastructure as a Feature Spotlight communities are highlighted in vellow. Community View Report Q Acushnet MA Q Barnstable MA Q Bath ME Q Biddeford ME Q Boston MA Q Bridgeport CT Q Brunswick ME Q Burlington VT Q Cape Elizabeth ME Q Cranston RI Q Damariscotta ME

Dover NH

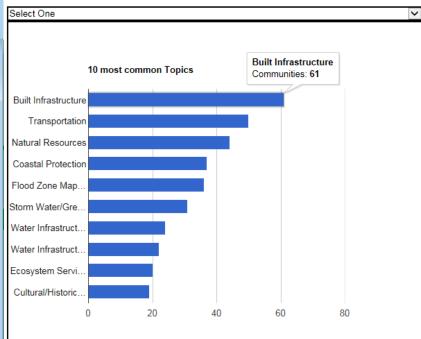
Durham NH Duxbury MA

Ellsworth ME Fairhaven MA Q

Q

Q

Q


Q

About Maps Top Ten List Search Definitions Q&A Spotlights

Top Ten List

Use the drop down arrow to select a subset of the most common key features to graph. Click on the bar graph for additional information and links to reports.

Number of Communities

ADVANCED SEARCHES

About Maps Top Ten List

Search

Definitions Q&A Spotlights

Search

Use this interface to do an advanced custom search to extract information from RAINE in a variety of ways. Click on as many options as preferred. You can also hold the control key to pick multiples in one category. Click on clear to clear the selection in any particular category. Click on search to view results displayed on both a map and list format. Use the green back arrow to start over.

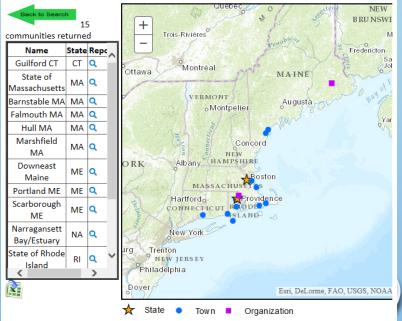
		Search	う		
State	Population	Type of Community	Spotlight Community		
CT ME MA NH RI VT	<10,000 10,000 - 60,000 >60,000	Town State Organization Watershed Group	Yes No		
Clear	Clear	Clear	Clear		
	Topics 🕕		Impacts 🕕		
	Economic Cost/Benefit Analysis Economic Resilience Ecosystem Services Ecosystem Agriculture/Forestry Coastal Protection Natural Resources Riverine Issues Soils		Erosion Extreme Heat Flooding Ocean acidification Precipitation Salt water intrusion Sea Level Rise Seasonal Shift Storm Surge Vectors		
	Clear		Clear		

Customizable searches based on:

State

Population Size Type of Community Topic Impacts Programs Partners Tools Funding

SEARCH RESULTS: TOWNS ADDRESSING STORM SURGE AND COASTAL PROTECTION IN PLANNING DOCUMENTS



About Maps Top Ten List Search Definitions Q&A Spotlights

Search

Use this interface to do an advanced custom search to extract information from RAINE in a variety of ways. Click on as many options as preferred. You can also hold the control key to pick multiples in one category. Click on clear to clear the selection in any particular category. Click on search to view results displayed on both a map and list format. Use the green back arrow to start over.

Search Results:

Map

List of towns that can be exported into excel spreadsheet

Links to reports, where more information is available about the town and links to actual documents

REPORTS:

RESILIENCE AND ADAPTATION IN NEW ENGLAND (RAINE)

North Kingstown, RI: Town Summary

The Town of North Kingstown was selected to participate in a pilot project with the University of Rhode Island Coastal Resources Center and the RI Sea Grant to study climate change and sea level rise. The outcome of this pilot project was maps and on-line data display tools to identify sea level rise vulnerabilities of local assets including public property and infrastructure, as well as community threats in North Kingstown. The town also utilized LIDAR data and sea level rise models to apply the Sea Level Affecting Marshes Model (SLAMM) to project the migration of marshes in the town in response to sea-level rise, in order to help decision makers identify marsh areas most at-risk, and locations where landward migration should be made possible.

						Plans and Products		
Population (US Census 2010): 25,953					Measurement and Evaluation-			
						Cost Efficient Climate Change in the North Atlantic(Year Unknown) 闻 🕛		
						Vulnerability Assessment-		
Features by category					Mapping Assets Vulnerable to Sea level Rise (2011) 🔍 🤨			
Economic	Ecosystem	Government/Academic Planning	Infrastructure	Response	Social	— Webpage- _ Rhode Island Sea Grant: North Kingstown Coastal Resilience webpage(Year Unknown) 🔍 🕕		
Economic Resilience	Coastal Protection	Bylaws/Ordinances/Codes Flood Zone Mapping	Built Infrastructure Transportation	Emergency/Disaster Preparedness/Hazard Mitigation	Cultural/Historical Resources	Partners Foundations- Rhode Island Foundation		
Impacts Drought Flooding					State- Rhode Island Sea Grant State- Rhode Island Statewide Planning Program			
Sea Level Rise Storm Surge								
Programs Community Rat	ing System					National Oceanic and Atmospheric Administration (Amount: Sea Grant and North Atlantic Regional Federal- (NOAA) Unknown) Team		
Tools						Foundations- (Amount: Unknown) Rhode Island Foundation		
Sea Level Affecting Marshes Model (SLAMM) :					State- (Amount: Unknown) Rhode Island Sea Grant			
						State- (Amount: Unknown) Rhode Island Statewide Planning Program		
						Contacts Teresa Crean (401) 874-6626 Pam Rubinoff Coastal Management Extension Specialist 401-874-6135		
					0	Notes See page 77 of "Cost Efficient Climate Change in the North Atlantic" for information relevant to North Kingstown, RI.		
						EDA Destas A CIG Control Medicardou May 20, 2045 5:47 DM		

EPA Region 1 GIS Center Wednesday, May 20, 2015 5:47 PM

Detailed report on a plan/ product

Mapping Assets Vulnerable to Sea level Rise (2011)

Vulnerability Assessment Link

North Kingstown, RI

Features

Economic	Ecosystem	Government/Academic Planning	Infrastructure	Response	Social	Other
None.	None.	Flood Zone Mapping	Built Infrastructure Transportation	None.	Cultural/Historical Resources	None.

Impacts

Flooding Storm Surge Sea Level Rise

Tools

Funding

Foundations- Rhode Island Foundation (Amount: Unknown) State- Rhode Island Sea Grant (Amount: Unknown) State- Rhode Island Statewide Planning Program (Amount: Unknown)

Contacts

Name: Teresa Crean Email: Phone Number: (401) 874-6626 Organization: Expertise:

RESILIENCE AND ADAPTATION IN NEW ENGLAND (RAINE)

Spotlight: Warwick RI

End of Road Retrofits

What they did, and why:

In the summer of 2014, Save the Bay worked with the City of Warwick to remove pavement at the end of five roads that dead end along Narragansett Bay. These roads were vulnerable to erosion and coastal flooding and conveyed untreated stormwater directly to the Bay.

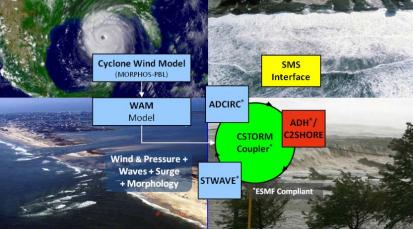
The pavement was removed and stormwater filter strips were installed to slow and filter road runoff. Grasses were planted in the restored coastal area and public access was incorporated at some of the sites to enhance neighborhood access to the shore.

NEXT STEPS

- CONTINUE TO REFINE THE DATABASE AND INTERNET SITE
- NOTIFY MUNICIPALITIES AND GET DATA QC'D
- WORK WITH KEY PARTNERS
- ENTER DATA
- GATHER SPOTLIGHTS
- GET THE WORD OUT CAN YOU HELP?

DISCUSSION QUESTIONS

- Can you help us to identify federal funding sources for some of these types of projects?
 - Are you aware of adaptation/resiliency efforts that should be captured in this database, but may have been overlooked? Do you have a suggestion for a highlight?
 - How could this align with your work?

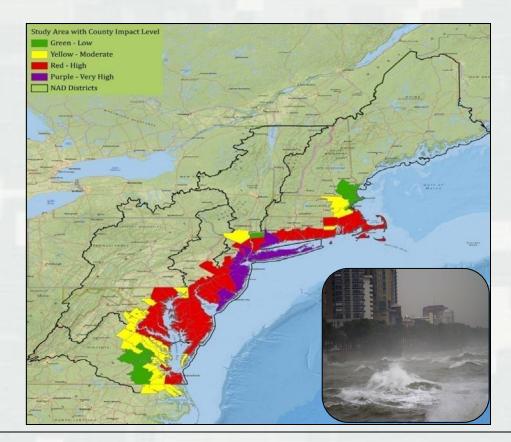


- Is there more state-level information we should be including?
- Who would be the most appropriate person(s) at the State departments to review the data we've captured for your state?

North Atlantic Coast Comprehensive Study Storm Simulation and Statistical Analysis Part I - Overview

Computing of the Joint Probability of Storm Forcing

Mary Cialone Numerical Modeling & Statistics Team Lead for NACCS


U.S. Army Corps of Engineers Engineer Research & Development Center Coastal & Hydraulics Laboratory

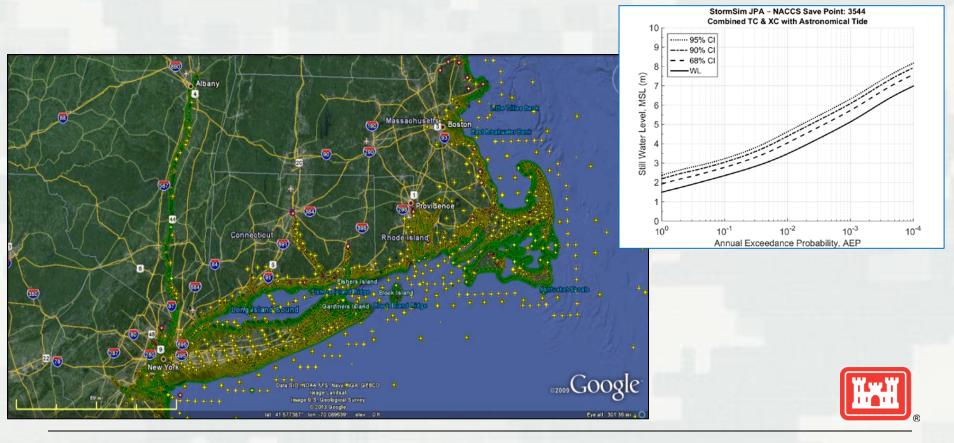
Northeast Regional Ocean Council 21 May 2015

After Sandy

- Address **flood hazard** of vulnerable coastal populations
- Develop a **risk-reduction** framework consistent with U.S. Government (USACE/NOAA) Rebuilding Principles

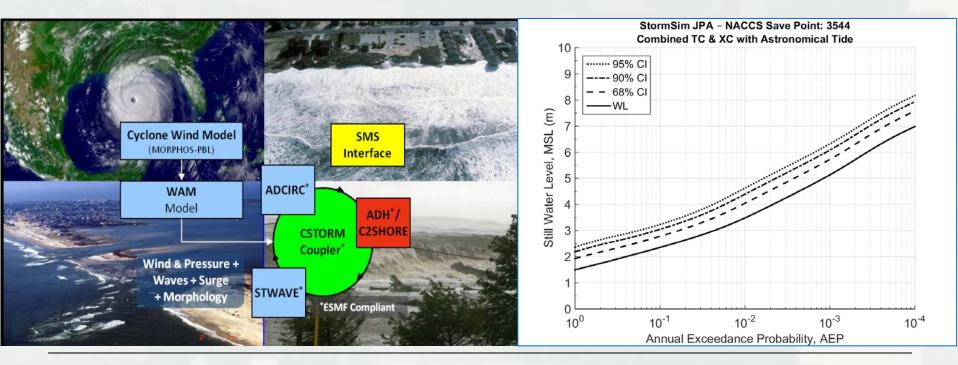
BUILDING STRONG®

NACCS Goals


• Develop a method to quantify resilience of coastal communities

• Promote **coastal resilient communities** with sustainable and robust coastal landscape systems, considering future sea level rise and climate change scenarios, to reduce risk to vulnerable population, property, ecosystems, and infrastructure

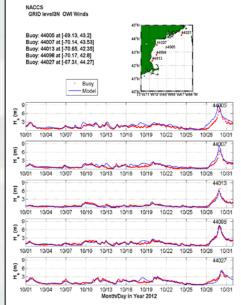
NACCS Numerical Modeling & Statistical Analysis Goal


compute statistics of coastal storm forcing parameters for the entire North Atlantic Coast

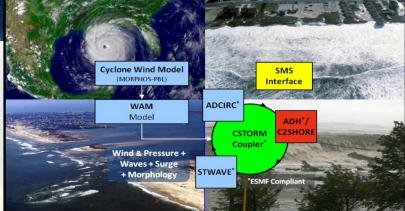
BUILDING STRONG®

Presentation Objective

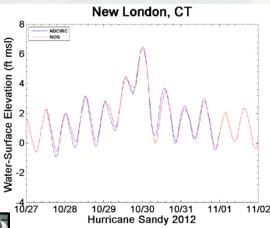
Discuss and inform.....about the advancements, outcomes and anticipated benefits of the storm surge modeling and statistics conducted for the NACCS



BUILDING STRONG®


ADCIRC

WAM



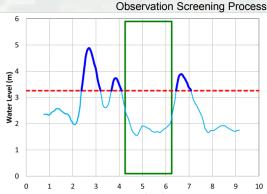
CSTORM-MS High Fidelity Modeling

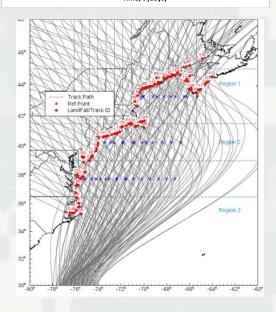
CSTORM-MS: Coastal STORM Modeling System

WAM: WAve Prediction Model STWAVE: STeady-State Spectral WAVE model ADCIRC: ADvance CIRCulation Model

STWAVE

Storm Selection


1050 storms


Historical Storms – applied to extratropical events

- 23 NOAA water level stations
- 30-yr record or more
- Peak-over-threshold
- 100 storms selected
- Composite Storm Set method (Nadal-Caraballo et al. 2014)

Synthetic Storms - applied to tropical events

- Radius to maximum winds
- Central pressure
- Forward speed
- Track
- Landfall location

BUILDING STRONG®

NACCS Storm Suite

- 100 Historical Extratropical Storms
- <u>1050 Synthetic Tropical Storms</u>
 1150 Total Storm Population

Model Simulations: 1150 Storms x 3 conditions:

- Surge and wave only (base)
- Surge and wave and tide
- Surge and wave and tide and sea level change

Total Storms simulated: 3450

HPC Resources: 3450 Storm Simulations

Department of Defense Supercomputing Resource Centers (DSRCs)

USACE

Garnet: Cray XE6

4,716 compute nodes 32 cores/node 150,912 processors

Air Force

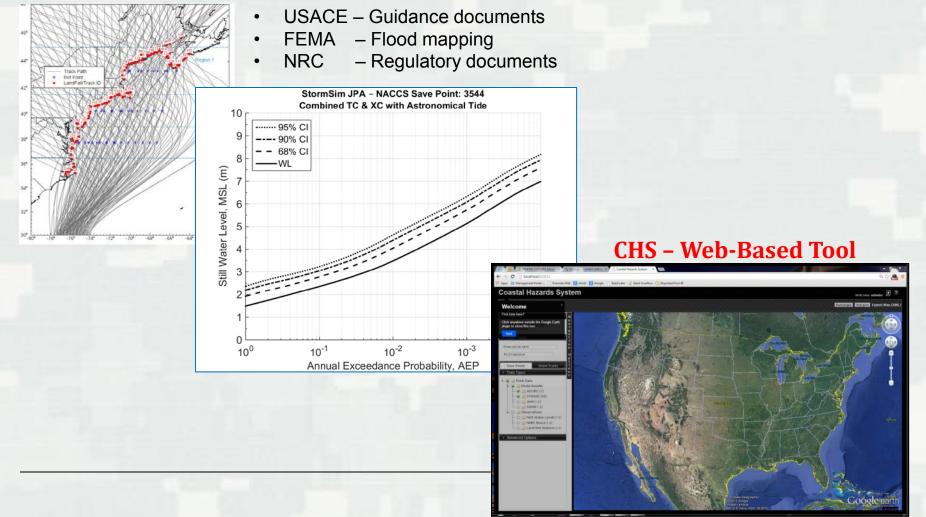
Spirit: SGI Ice X

4,590 compute nodes 16 cores/node 73,440 processors

- 100M CPU hours
- Largest CW project
- 40% Garnet and 60% Armstrong
- 8-month time frame

Navy

Armstrong: Cray XC30


1,347 compute nodes 24 cores/node 32,328 processors

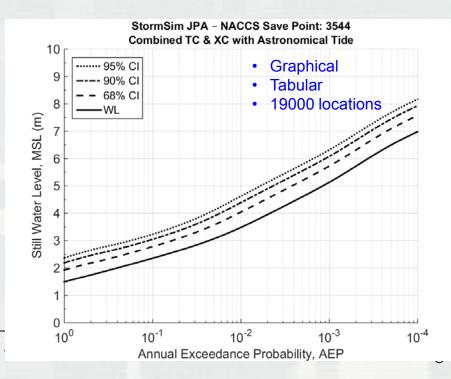
Statistics and Coastal Hazards System

State-of-the-art statistical methodology

Joint Probability Method with Optimal Sampling (JPM-OS)

Data Products 1/3

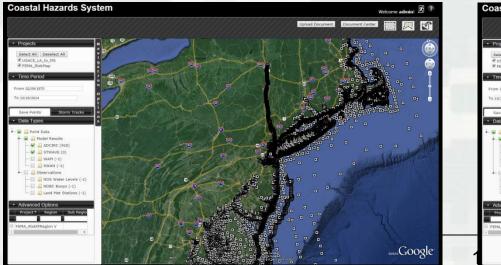
serve the coastal engineering and management communities 10+ years

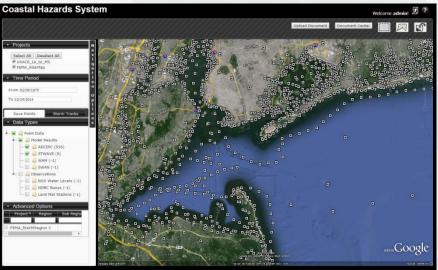

- <u>Model results</u> waves, water levels, water velocities, wind and pressures at ~19000 "virtual gage" locations as well as regionally
- Statistics
- Coastal Hazards System

Data Products 2/3

serve the coastal engineering and management communities 10+ years

- <u>Model results</u> waves, water levels, water velocities, wind and pressures at ~19000 "virtual gage" locations as well as regionally
- **<u>Statistics</u>** joint probability of storm response
- Coastal Hazards System

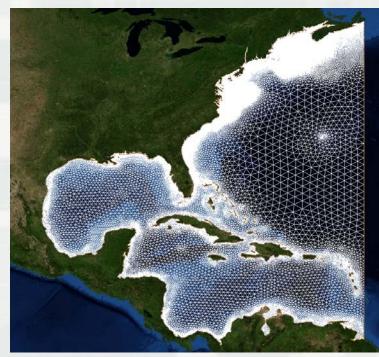

Data Products 3/3


serve the coastal engineering and management communities 10+ years

- <u>Model results</u> waves, water levels, water velocities, wind and pressures at ~19000 "virtual gage" locations as well as regionally
- **<u>Statistics</u>** joint probability of storm response

• <u>Coastal Hazards System</u> - web-based software

Improved method of delivery of information; well-vetted; QA/QC; available

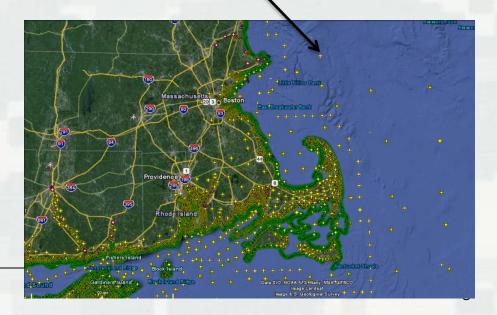


Economies of Scale 1/3

spatial extent/quantity of reusable data from regional model

- <u>Regional model</u> detailed resolution from Virginia to Maine; efficiently perform sims - 5 Districts; consistent transitions/no disjoints/ continuum of data
- Reusable data
- Available to others

Jones Inlet, NY


BUILDING STRONG®

Economies of Scale 2/3

spatial extent/quantity of reusable data from regional model

- <u>Regional model</u> detailed resolution from Virginia to Maine
- <u>Reusable data</u> new project decisions; input conditions for fine scale modeling
- Available to others

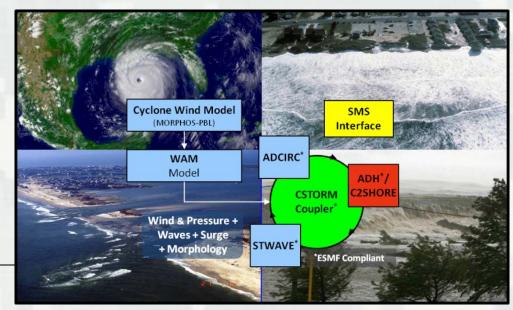
Model Results & Statistics easily accessible

Economies of Scale 3/3

spatial extent/quantity of reusable data from regional model

- <u>Regional model</u> detailed resolution from Virginia to Maine
- <u>Reusable data</u> new project decisions; input conditions for fine scale modeling
- Available to others Coastal Hazards System accessible to Corps, Federal/State Partners, Coastal Community

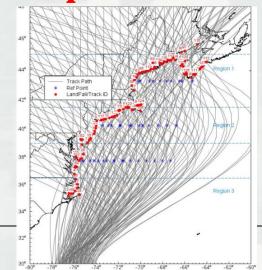
16

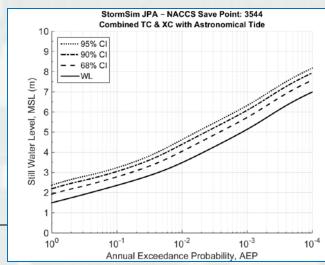

- On-line Help
- On-line Tutorials
- Users Guide

Relevance 1/2

technical advancements post-Katrina; enterprise modeling and analysis methods; USACE engineering guidance update

- <u>CSTORM-MS</u> high-resolution, highly-skilled physics-based models in a tightly-integrated modeling system; computational leaps in HPC
- Statistical analysis
- Incorporated into Corps guidance
- Physical representation of land features
- Frictional resistance
- Wetting/Drying
- Coupling
- Efficiency
- Magnitude



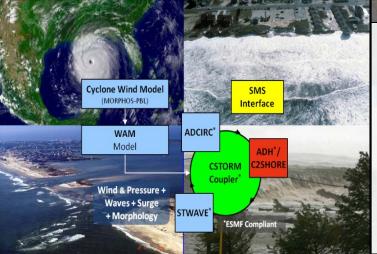

Relevance 2/2

technical advancements post-Katrina; enterprise modeling and analysis methods; USACE engineering guidance update

18

- <u>CSTORM-MS</u> high-resolution, highly-skilled physics-based models in a tightly-integrated modeling system; computational leaps in HPC
- <u>Statistical analysis</u> JPM-OS state-of-the-art scientific tools
- Incorporated into Corps guidance

Summary Outcomes of NACCS Numerical Modeling and Statistical Analysis


- <u>Data Products</u>: serve the coastal engineering and management communities 10+ years
- <u>Economies of Scale</u>: spatial extent/quantity of reusable data from regional model
- <u>Relevance</u>: technical advancements post-Katrina; enterprise modeling and analysis methods; USACE engineering guidance update

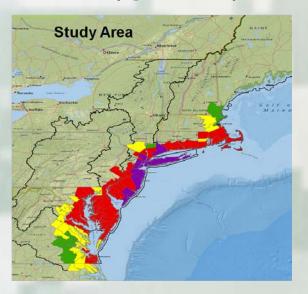
19

Questions?

Composite Storm Set

Extratropical Cyclones

- Based on peaks-over-threshold (POT) sampling of storm surge (NTR) from 23 NOAA water level stations.
- Generalized Pareto distribution fitted to POT events.
- Compare
 - Composite storm set (CSS) ("global" set 1 per study) vs.
 - ► Full storm sets (FSS) ("local" set 1 per gage)
- Objective
 - Determine minimum number of storms in CSS required to match the FSS' probability distributions.

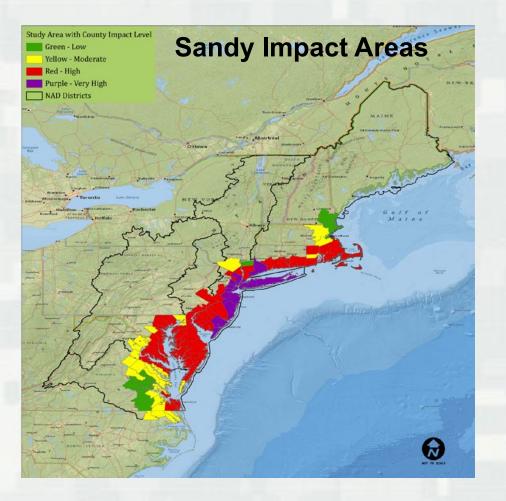


North Atlantic Coast Comprehensive Study Storm Simulation and Statistical Analysis Part II – Production System

Chris Massey, Jay Ratcliff, and Mary Cialone

USACE-ERDC Coastal & Hydraulics Lab Chris.Massey@usace.army.mil

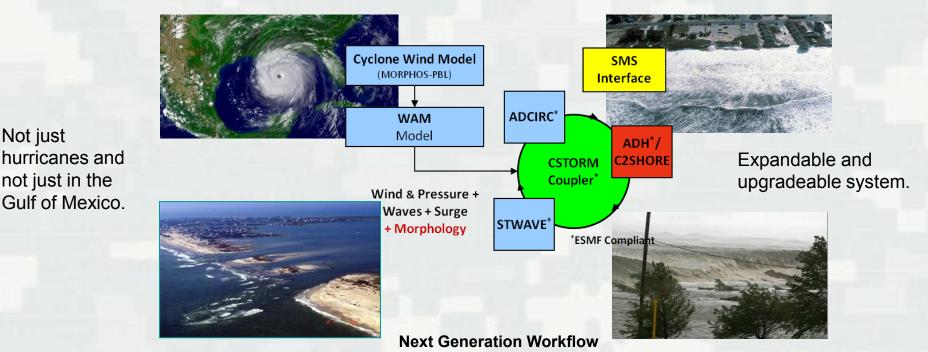
Northeast Regional Ocean Council 21 May 2015



North Atlantic Coast Comprehensive Study

This study will compute the joint probability of Hurricane Sandy and historical coastal storm forcing parameters for the east coast region from Maine to Virginia as a primary requirement for project performance evaluation. The primary focus is on storm winds, waves and water levels along the coast for both tropical and extra-tropical storm events.

Modeling Team Lead and POC: Mary Cialone, USACE-ERDC-CHL



Innovative solutions for a safer, better world

Coastal Storm Modeling System CSTORM-MS

Application of high resolution, highly-skilled numerical models in a tightly-integrated modeling system with user friendly interfaces

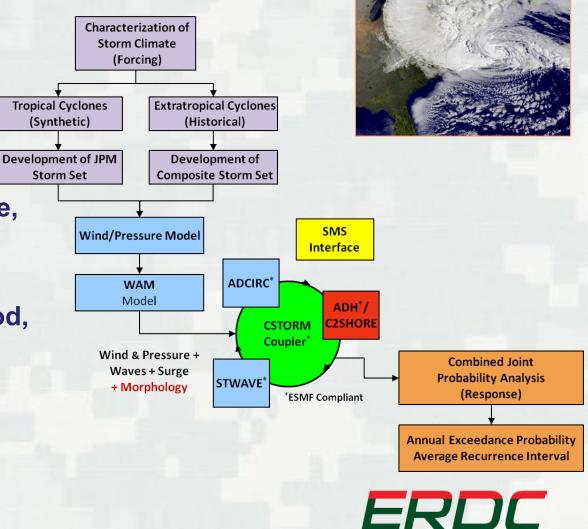
Provides for a robust, standardized approach to establishing the risk of coastal communities to future occurrences of storm events.

Not just

BUILDING STRONG®

Innovative solutions for a safer, better world

ERDC

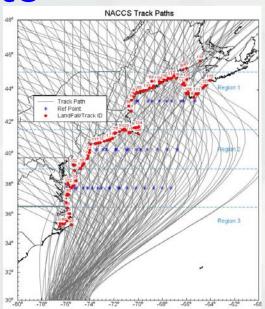

Combined Joint Probability of Coastal Storm Hazards

Forcing

- Tropical cyclones
- Extratropical cyclones

Response

- Water level (storm surge, astronomical tide, SLC)
- Currents
- Wave height, peak period, direction
- Wind speed, direction


NACCS Storm Suite

- 100 Historical Extratropical Storms
- <u>1050 Synthetic Tropical Storms</u>
 <u>1150 Total Storms</u>

1150 Storms simulated for 3 conditions: *

- Surge and wave only (base)
- Surge and wave and tide
- Surge and wave and tide and sea level change

Total Storms simulated: 3450 (Challenge #1 – many storms)

HPC Resources: 3450 Storm Simulations

Department of Defense Supercomputing Resource Centers (DSRCs)

USACE

Garnet: Cray XE6

4,716 compute nodes 32 cores/node 150,912 processors

Air Force

Spirit: SGI Ice X

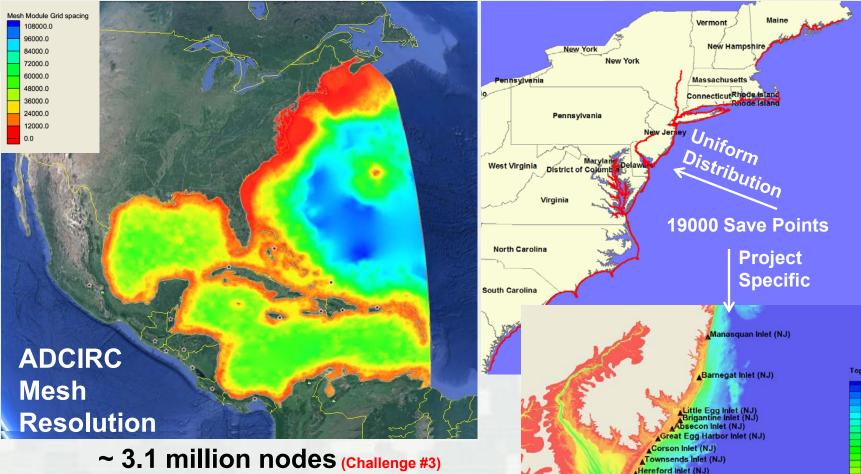
4,590 compute nodes 16 cores/node 73,440 processors

- 100M CPU hours
- Largest CW project
- 40% Garnet and 60% Armstrong

6

- 8-month time frame
- (Challenge #2 managing resources)

Navy

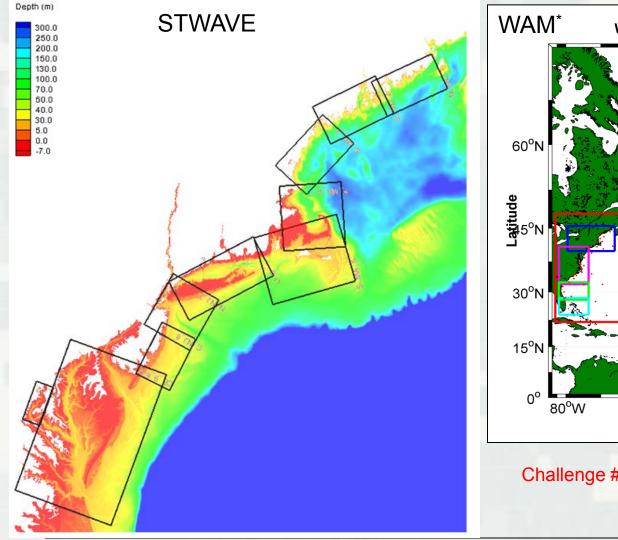


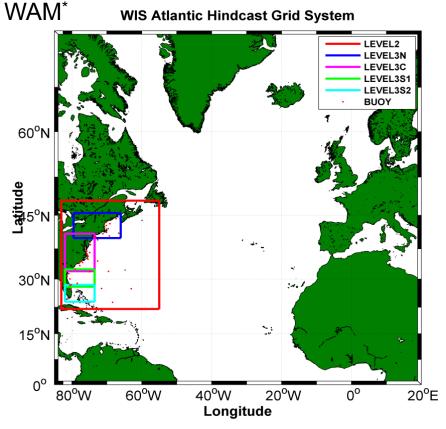
Armstrong: Cray XC30

1,347 compute nodes 24 cores/node 32,328 processors

NACCS Model Domains and Save Points

scale and magnitude of modeling


Resolution from 10 m to 100 km

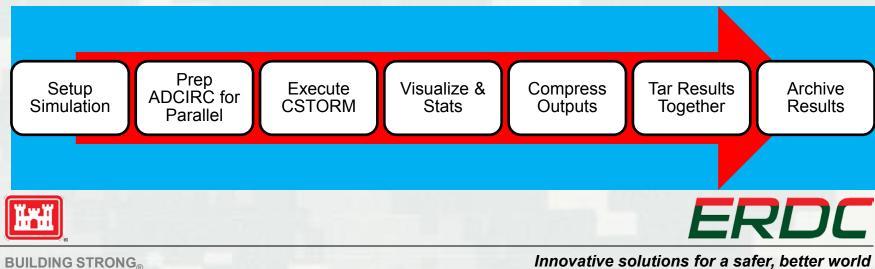

Cape May Inlet (NJ)

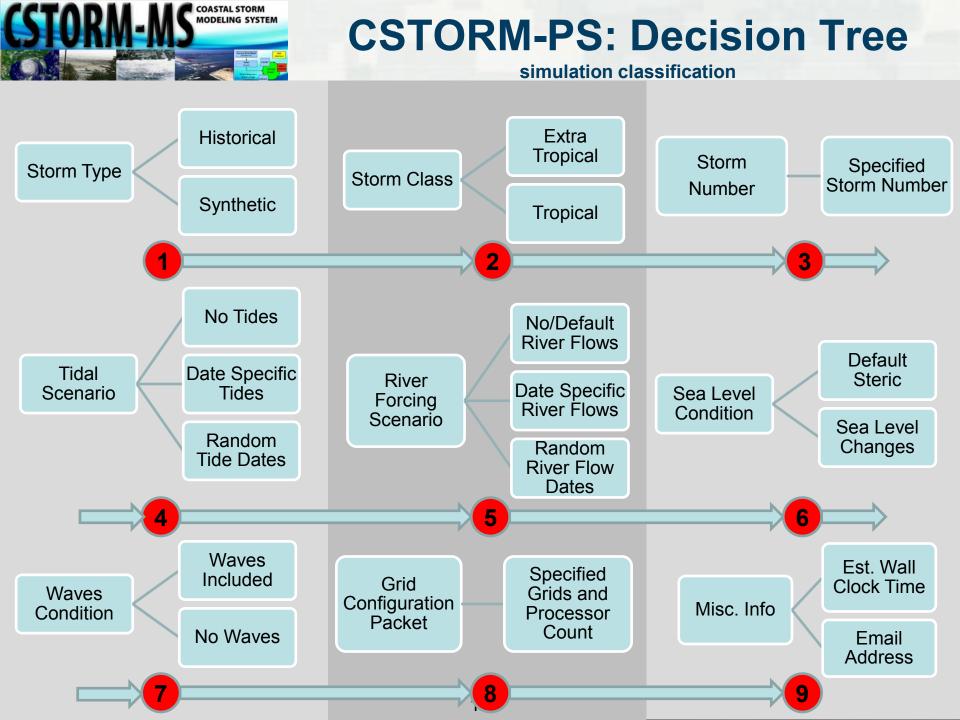
-5.0

Wave Grids

Challenge #4 – Many grids

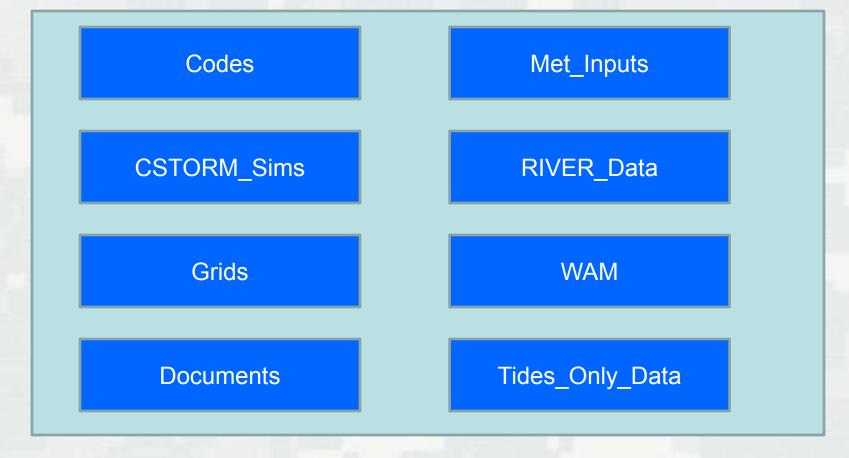
Innovative solutions for a safer, better world


BUILDING STRONG_®


CSTORM Production System

Challenge #5 – Staying Organized! Many storms, resources, computational nodes, grids

- The CSTORM Production System (CSTORM-PS) makes use of standard Linux/Unix tools (bash scripting) and readily available open source software (Python)
- The production system allows for
 - Rapid preparation of necessary input files for individual CSTORM-MS production runs (Reduces chances for human error)
 - Execution of the simulation •
 - Execution of the CSTORM Visualization and Report tool
 - Efficient file storage and archival
- The production system is general enough for use in future projects

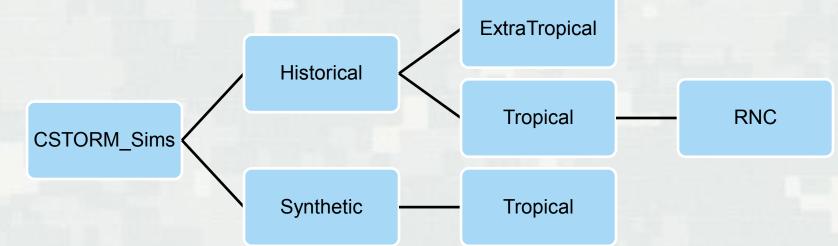


Innovative solutions for a safer, better world

CSTORM-PS Main Project Directory

For organizing and classifying simulations

BUILDING STRONG_®


Innovative solutions for a safer, better world

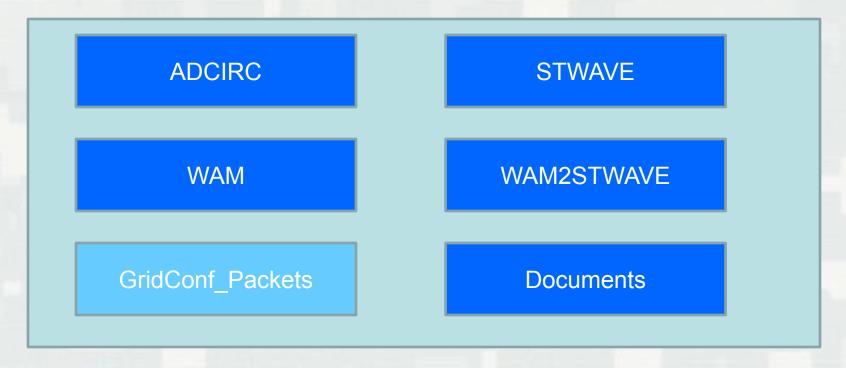
ERDC

Basic Directory Hierarchy

Naming convention: group/label storms; improved metadata; cataloging of events

RNC = Run_NM_Tides_TN_SLC_SN_RFC_RN_WAV_WN_GCP_PN_UID_IDV

- Run_NM = Storm Number, NM = 0001 to 1050
- Tides_TN = Tidal Scenario, TN = 0 to 5
- SLC_SN = Sea Level Change/Steric Adjustment Scenario, SN = 0 to 2
- RFC_RN = River Forcing Conditions, RN = 0 to 2
- WAV_WN= Waves Off/On, WN = 0 or 1
- **GCP_PN** = Grid Configuration Packet
- UID_IDV = User Identification, IDV = person performing simulation

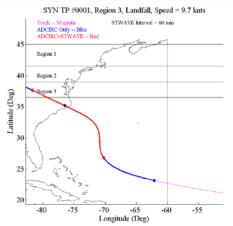

BUILDING STRONG_®

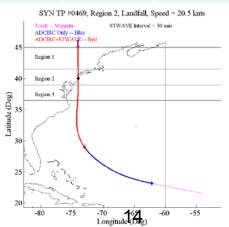
Innovative solutions for a safer, better world

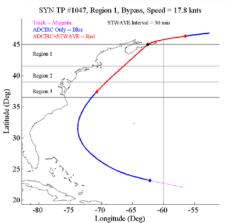
ERDC

CSTORM-PS Grids Directory

To define different project level grids .compare project designs; with and without project


BUILDING STRONG_®




Run Parameter Table (Synthetic Tropical)

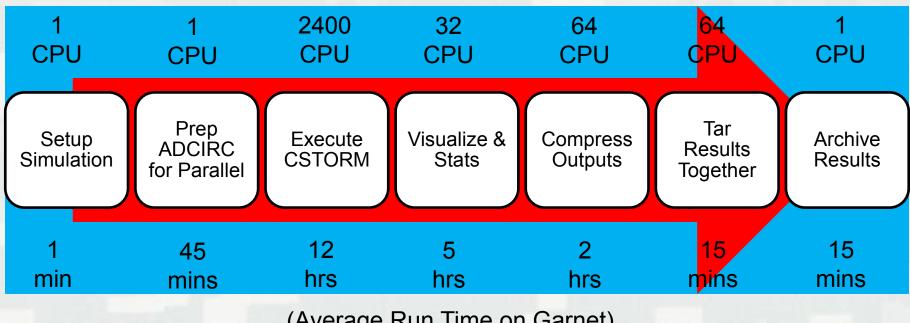
Storm Num.	Met Start Date	Met End Date	Met Int. (min)	STW Start Date	STW End Date	STW Int. (min)	ADC Wind Start D	d	ADC Wind End Date
0469	2000071106	2000071518	5	2000071315	20000715	515 <mark>30</mark>	200007:	1205	2000071518
0470	2000071212	2000071512	. 5	2000071407	20000715	507 15	200007:	2000071316 2	
0471	2000070500	2000071700	5	2000071206	20000716	606 <mark>60</mark>	2000070	0709	2000071700
(cont)	Tidal I	Random R	andom	Random F	Random	Random	SLC /	SLC /	SLC /

(cont)	lidal	Random	Random	Random	Random	Random	SLC /	SLC /	SLC /
()	Spin-Up	Tide	Tide	Tide	Tide	Tide	Steric	Steric	Steric
	(days)	IHOT	IHOT	IHOT	IHOT	IHOT	0	1	2
		Val 1	Val 2	Val 3	Val 4	Val 5	(m)	(m)	(m)
	14.00	2862000	2329200	1825200	1602000	2012400	0.109	1.109	0.609
	14.00	1684800	2289600	2296800	1404000	3614400	0.109	1.109	0.609
	14.00	1882800	2444400	3081600	3204000	1933200	0.109	1.109	0.609

CSTORM Properties Log (Inclusion of Metadata)

NACCS CSTORM-MS Production Script Log

Setup Performed by User ID: brittany Setup Date Time (MM-DD-YYYY HH:MM:SS) : 10-17-2014 13:48:49 Storm Type : Synthetic Storm Class : Tropical Storm Number: 0468 Tidal Scenario Num.: 2 Sea Level Condition Num. : 1 River Flux Condition Num. : 0 Geoid Offset: 1.109 meters Grid Configuration Packet : GCP NAC13 CSTORM Executable : cpadcirc v1.1.16 adc v51.32 stw v6.2.24 20140716 Number of STWAVE Grids: 10 Number of Wind/Pre Files : 2



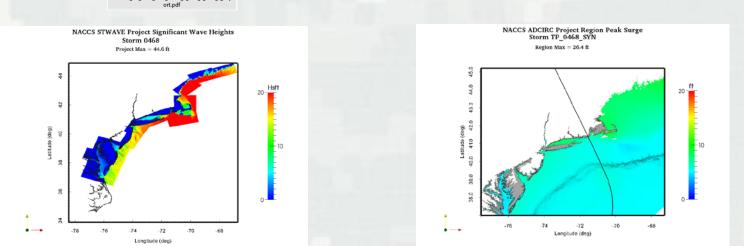
BUILDING STRONG_®

ERDC

Production Simulation Sequence and Processors

(Average Run Time on Garnet)

For the entirety of the NACCS Numerical Modeling Study, approximately 100 million CPU hours were used on DoD HPC systems to simulate over 3450 combinations of storms and water level conditions. ERDC



PDF

NACCS_TP_0468_SYN_Tides_2_SLC_1_RFC_0_Rep

CSTORM-Viz & Report POC: Dr. Jay Ratcliff

A 57 page auto generated report with 55 pages of images: maximums for surge, waves heights and periods and a 2 page summary of run statics.

The report quality graphics and run statics are generated via a combination of Python scripts and Paraview, which is a multiplatform visualization software package capable of rendering graphics using multiple processors.

BUILDING STRONG_®

Archived Results

ADCIRC:

NACCS_TP_0468_SYN_Tides_2_SLC_1_RFC_0_ADCIRC_GBL_Hydro.tar NACCS_TP_0468_SYN_Tides_2_SLC_1_RFC_0_ADCIRC_GBL_Met.tar NACCS_TP_0468_SYN_Tides_2_SLC_1_RFC_0_ADCIRC_MaxMins.tar NACCS_TP_0468_SYN_Tides_2_SLC_1_RFC_0_ADCIRC_Stations.tar

STWAVE:

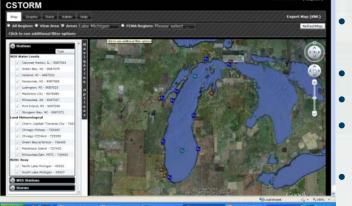
NACCS_TP_0468_SYN_Tides_2_SLC_1_RFC_0_STWAVE_NME_Outputs.tar NACCS_TP_0468_SYN_Tides_2_SLC_1_RFC_0_STWAVE_NME_SurgeWind.tar NACCS_TP_0468_SYN_Tides_2_SLC_1_RFC_0_STWAVE_All_Stations.tar

Repeated for each STWAVE Grid

CSTORM:

NACCS_TP_0468_SYN_Tides_2_SLC_1_RFC_0_CSTORM_Data.tar

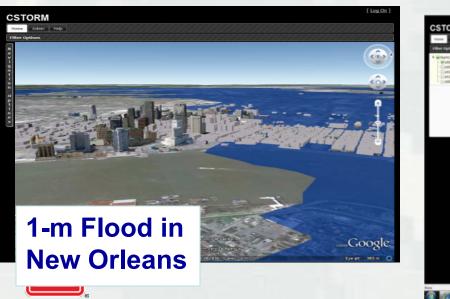
Viz:

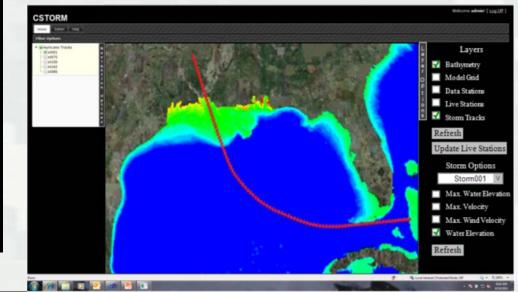

NACCS_TP_0468_SYN_Tides_2_SLC_1_RFC_0_Report.pdf NACCS_TP_0468_SYN_Tides_2_SLC_1_RFC_0_Viz_ADCIRC_pngs.tar.gz NACCS_TP_0468_SYN_Tides_2_SLC_1_RFC_0_Viz_STWAVE_MaxMins.tar NACCS_TP_0468_SYN_Tides_2_SLC_1_RFC_0_Viz_STWAVE_pngs.tar.gz NACCS_TP_0468_SYN_Tides_2_SLC_1_RFC_0_Viz_Data.tar NACCS_TP_0468_SYN_Tides_2_SLC_1_RFC_0_Viz_VTK.tar

Typically: 31 tar files with compressed results plus a copy of the PDF report.

Run properties log included within each tar file.

ERDC

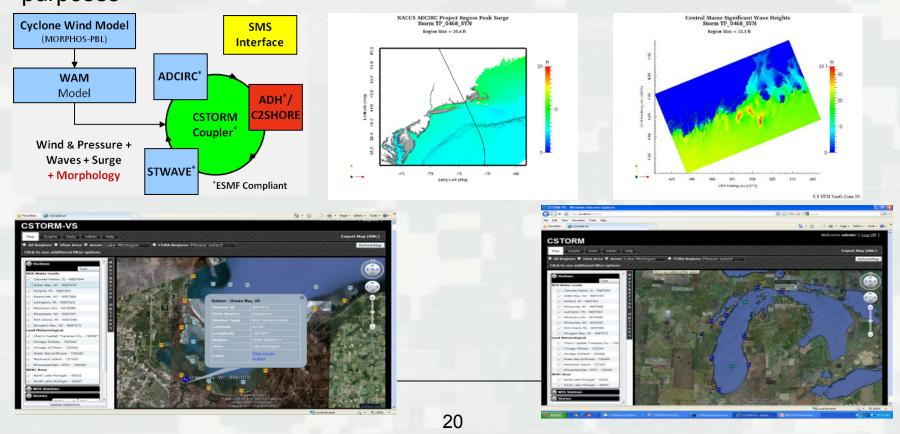



Coastal Hazards System (CHS)

POC: Jeff Melby, USACE-ERDC-CHL

Leveraging USACE regional coastal studies

- Gathering historical measurements and high-fidelity climate, surge, and wave modeling results
- Creating national storm database
- Web tool with Google Earth map interface
- Data mining and analysis tools (plotting, extremal analysis)
- Surrogate modeling from database (high-fidelity surge prediction layer)


Innovative solutions for a safer, better world

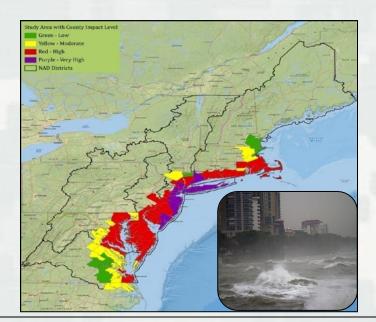
BUILDING STRONG_®

Summary

- CSTORM-MS is an efficient, robust, extensible modeling system for quantifying the risk of coastal communities to storm events
- Streamlined workflow saves time and reduces both computational and personnel cost
- Model data feeds into the Coastal Hazards System for easy access and reuse purposes

North Atlantic Coast Comprehensive Study Coastal Storm Risk Management Framework

Dave Robbins NACCS Lead


U.S. Army Corps of Engineers Baltimore District

Northeast Regional Ocean Council 21 May 2015

9-Step Process


- Address **flood hazard** of vulnerable coastal populations
- Develop using information/processes related to:
 - USACE 6-step planning process
 - FEMAs National Framework
 - prevention
 - protection
 - mitigation
 - response
 - disaster recover

Provides

- Consistent approach across governments, communities, scales
- Address coastal flood risk

NACCS Goal

- Customizable to coastal communities
- Implemented to smaller watershed scales
 - Incorporating state and local priorities
 - Refining datasets
 - Performing site-specific analysis

Multi-Tiered Approach

Tier 1 – applied NACCS Framework to entire NACCS study area (Appendix D)

Tier 2 – State scale to address coastal flood risk by applying the NACCS Frameowrk as part of a systems approach using more refined, local datasets, goals, objectives, and constraints

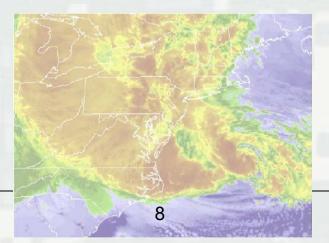
Tier 3 – Community scale

Appendix C – Planning Analysis

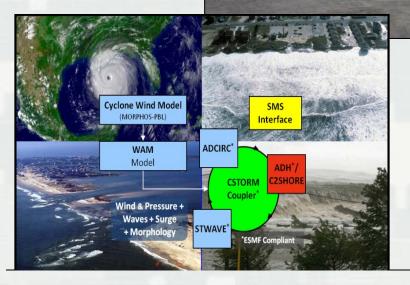
- Methodology of using geographic info datasets associated with...
- Exposure indices
 - Population density and infrastructure
 - Social vulnerability characterization
 - Environmental and cultural resources

Exposure Index

Coastal Storm Risk Management Framework


- Data layers create an index for comparison
- Weights
 - Assigned to data layers
 - Can be adjusted by coastal manager

To Be Done


- Tier 2 vulnerability assessment (measuring exposure, sensitivity, adaptive capacity)
- Tier 3 incorporating benefit-cost analysis, evaluation, and ultimately leading to plan selection

Questions?

Dave Robbins David.W.Robbins@usace.army.mil Phone: 410-962-0685

New Approaches to Planning, Implementing & Managing Coastal Measures **Responding to Waves of Change**

Howard Marlowe

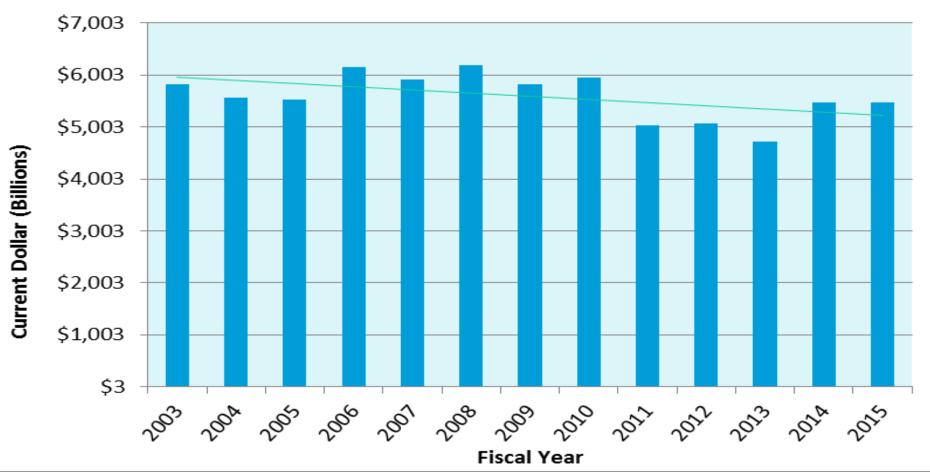
Alden Street Consulting

Overview

- Challenges
- Opportunities

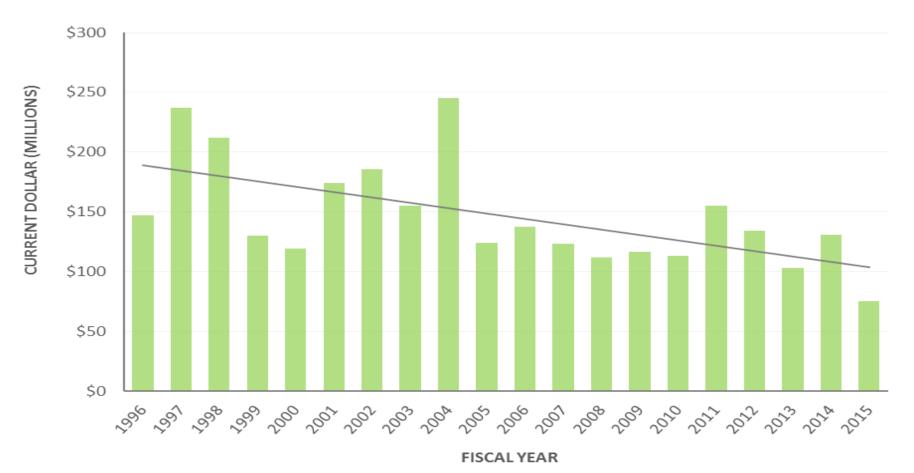
The Cupboard is (almost) Bare

- Corps budget is not adequate to meet needs
- \$5 6 billion we fall behind
- Add \$1 to \$2 billion more, we're still far behind
- State & Local Government wallets are empty



Water Resources – 'Silent Infrastructure'

- Neglected; not a public or congressional priority
- Project-by project approach is 'so yesterday' We know how to do it better
- Feds don't have the money; neither do states
- Alternative Financing is Necessary
- Other Changes Needed
 Corps Congress States Businesses Etc.


Corps' CW Budget is Flat

Civil Works Budget

CSDR Funding is Declining

Shoreline Protection Budget FY 1996-2015

Copyright 2015 Alden Street Consulting

Challenges

- Sea Level Rise
- Storms
- New methods to plan, implement and
 - manage coastal water resources needs

Regionality

- Goal
- Impediments
- Existing Authorities
- What's Missing?

Solutions – Systems Approach

- Coastalshed planning, budgeting, and managing
- Regional Alliances of States

Howard Marlowe

Alden Street Consulting LLC Howard.Marlowe@aldenst.com

202-467-5025

http://bit.ly/1LiWIhE

Copyright 2015 Alden Street Consulting