An overview of potential marsh migration in response to sea level rise datasets created as part of Maine's NOAA Project of Special Merit

NROC Marsh Migration and Policy Workshop

Peter A. Slovinsky, Marine Geologist



Maine Department of Agriculture, Conservation and Forestry

Maine Geological Survey





## I'll cover....

- Maine's marsh migration analysis method the why, how and when.
- Marsh migration/change summary results for modeled time steps
- Most significant 'limiting factors' to predicting marsh migration/change using marsh migration modeling
- What would the state do differently if it were to repeat the marsh migration modeling exercise
- Anticipated or implemented policy changes as a result of this work

## **SLR scenarios selected for mapping**

- Short Term: approximately 1 ft by 2050
- Long Term: 2-4 ft but potentially more by 2100;
- We decided to examine scenarios of 1 foot, 2 feet, 3.3 feet, and 6 feet on top of the highest annual tide (HAT).
- These SLR scenarios relate well to the National Climate Assessment, and also correspond well with evaluating potential impacts from storm surges that may coincide with higher tides today.



# Integrating Science into Policy: Adaptation Strategies for Marsh Migration

































# Our POSM Project Goals

### Minimal project goal:

increase pubic awareness on SLR and marsh migration

**Preferred goals:** 

- Map the limits of the Highest Annual Tide on a state-wide basis in support of Shoreland Zoning purposes;
- Map potential marsh migration areas on a state-wide basis using a scenario based approach of future sea level rise, and determine what types of existing landcover might be impacted (MNAP).
- in six partner communities, use this data to work to develop and implement local partner-driven but transferable adaptation strategies for community resiliency and marsh migration.



# **Coastal wetlands**

"Coastal wetlands" means all tidal and subtidal lands; all areas with vegetation present that is tolerant of salt water and occurs primarily in salt water or estuarine habitat; and any swamp, marsh, bog, beach, flat or other contiguous lowland that is subject to tidal action during the highest tide level for each year in which an activity is proposed as identified in tide tables published by the National Ocean Service. Coastal wetlands may include portions of coastal sand dunes.

## **Required in Maine's Municipal Shoreland Zoning**

## Using Tidal Elevations as Proxies for the Marsh...

**Highest Annual Tide (HAT)** - "spring" tide, the highest predicted water level for any given year but is reached within several inches numerous tides a year

Mean High Water (MHW) - the averaged daily high water mark

**Mean Tide Level (MTL)** = average height of the ocean's surface (between mean high and mean low tide).



Coastal wetlands generally exist between MTL and HAT. Low marsh generally exists between MTL and MHW. High marsh generally exists between MHW and HAT.

Tidal elevations are determined from nearby applicable NOAA National Ocean Service/CO-OPs tidal prediction stations (Old Orchard Beach)



Each Tidal Station has a predicted HAT in ft, MLLW, for each year.

There are 113 tidal prediction stations in Maine and nearby New Hampshire that were used as part of this analysis.

**NOAA - NOS Tidal Prediction Station Locations** 

Highest\_Annual\_Tide

#### Maine DEP

Location

#### Highest Annual Tide (HAT) Levels for Year 2013 Maine Coast from Eastport to Portsmouth, NH

| Loouton                         | 201011/11         | 1711 (110 V D 20) |              | Ref. otation |
|---------------------------------|-------------------|-------------------|--------------|--------------|
|                                 | (Tide Table- ft.) | (elev. feet)      | (elev. feet) |              |
| Primary Control Stations        |                   |                   |              |              |
| New Castle, NH (Fort Point)     | 11.5              | 7.6               | 6.8          |              |
| Portland                        | 11.9              | 7.4               | 6.6          |              |
| Bar Harbor                      | 13.5              | 8.2               | 7.5          |              |
| Eastport                        | 22.3              | 13.0              | 12.4         |              |
| Secondary Stations              |                   |                   |              |              |
| EASTPORT                        | 22.3              | 13.0              | 12.4         | Eastport     |
| Cobscook Bay                    |                   |                   |              |              |
| Garnet Point, Pennamquan R.     | 23.2              | 13.4              | 12.8         | Eastport     |
| Coffins Point                   | 21.0              | 12.3              | 11.6         | Eastport     |
| Birch Islands                   | 21.0              | 12.3              | 11.6         | Eastport     |
| Cutler, Little River            | 16.5              | 9.7               | 9.1          | Eastport     |
| Cutler, Naval Radio Station     | 15.6              | 9.1               | 8.5          | Eastport     |
| Stone Island, Machias Bay       | 15.2              | 9.0               | 8.3          | Eastport     |
| Machiasport, Machias River      | 15.4              | 9.1               | 8.5          | Eastport     |
| Shoppee Point, Englishman Bay   | 14.7              | 8.8               | 8.2          | Eastport     |
| Steele Harbor Island            | 15.1              | 9.3               | 8.5          | Portland     |
| Millbridge, Narraguagus River   | 14.6              | 9.0               | 8.2          | Portland     |
| Green Island, Petit Manan Bar   | 13.8              | 8.5               | 7.7          | Portland     |
| Prospect Harbor                 | 13.7              | 8.3               | 7.6          | Portland     |
| Winter Harbor, Frenchman Bay    | 12.8              | 7.8               | 7.1          | Bar Harbor   |
| Mount Desert Island             |                   |                   |              |              |
| BAR HARBOR                      | 13.5              | 8.2               | 7.5          | Bar Harbor   |
| Southwest Harbor                | 12.9              | 7.8               | 7.1          | Bar Harbor   |
| Bass Harbor                     | 12.5              | 7.5               | 6.8          | Bar Harbor   |
| Blue Hill Bay                   |                   | 0.0               |              |              |
| Blue Hill Harbor                | 12.8              | 7.8               | 7.1          | Bar Harbor   |
| Mackerel Cove                   | 12.7              | 7.7               | 6.9          | Bar Harbor   |
| Ellsworth                       | 13.5              | 8.2               | 7.5          | Bar Harbor   |
| Burnt Coat Harbor, Swans Island | 12.0              | 7.3               | 6.6          | Bar Harbor   |
| Penobscot Bay                   |                   |                   |              |              |
| Eggemoggin Reach                |                   |                   |              |              |
| Center Harbor                   | 12.8              | 7.8               | 7.1          | Bar Harbor   |
| Little Deer Isle                | 12.7              | 7.7               | 6.9          | Bar Harbor   |
| Isle Au Haut                    | 11.7              | 7.1               | 6.4          | Bar Harbor   |
| Stonington, Deer Isle           | 12.3              | 7.4               | 6.7          | Bar Harbor   |

Each year, MGS would calculate the HAT at the 113 tidal stations for Maine DEP in support of Maine's Shoreland Zoning Regulations.

In our mapping effort, the key was to 1) fill in data "gaps" where no tidal stations existed, and 2) convert predicted HAT values into NAVD so they can be compared with LiDAR land elevations.

Highest\_Annual\_Tide

#### SNOAA's Vertical Datum Transformation - v3.2



Horizontal Information

|                                                        | Source                     |                         |        | Target                     |             |                   |   |  |
|--------------------------------------------------------|----------------------------|-------------------------|--------|----------------------------|-------------|-------------------|---|--|
| Datum:                                                 | NAD83(2011/2007            | /CORS96/HARN) - North A | m 🔻    | NAD83(2011/2               | 2007/CORS96 | /HARN) - North Am | ▼ |  |
| Coor. System:                                          | UTM (northing, ea          | UTM (northing, easting) |        | UTM (northing, easting)    |             |                   | - |  |
| Unit:                                                  | meter (m)                  |                         | -      | meter (m)                  |             |                   | - |  |
| Zone:                                                  | 19                         |                         | -      |                            |             |                   | - |  |
| Vertical Infor                                         | mation                     |                         |        |                            |             |                   |   |  |
|                                                        | Source                     |                         | Target |                            |             |                   |   |  |
| Datum:                                                 | MLLW                       |                         | -      | NAVD88/GUVE                | 004/NMVD03/ | ASVD02/PRVD02/V   | - |  |
| Unit:                                                  | foot (U.S. Survey) (US_ft) |                         | -      | foot (U.S. Survey) (US_ft) |             |                   |   |  |
|                                                        | Height                     | Sounding                |        | Height                     |             | Sounding          |   |  |
|                                                        | GEOID model:               |                         | -      | GEOID mod                  | del:        |                   | - |  |
| Point Conversion ASCII File Conversion File Conversion |                            |                         |        |                            |             |                   |   |  |
|                                                        | Input                      |                         |        | Output                     |             |                   |   |  |
| Easting: 48                                            | 9355.744                   | File Report             | Cor    | rvert                      | Easting:    | 489355.7440       |   |  |
| Northing: 48                                           | 57269.871                  | to DMS                  | Re     | set                        | Northing:   | 4857269.8710      |   |  |
| Height: 0                                              |                            |                         | DI     | NS                         | Height:     | -5.2719           |   |  |
| VDATUM c                                               | an be used t               | o spatially estim       | ate va | ariability i               | in the wo   | ater's surface    |   |  |
| by determi                                             | ning separa                | tions in different      | datu   | ms (i.e., N                | ILLW to     | NAVD88).          |   |  |

#### 💐 Highest Annual Tide

|                                                         |       |        |   |   | *        |
|---------------------------------------------------------|-------|--------|---|---|----------|
| Clipped DEM already generated                           |       |        |   | • |          |
| Select polygon layer for analysis extent                |       |        |   |   |          |
|                                                         |       |        | • | 2 |          |
| Select DEM (optional)                                   |       |        |   |   |          |
|                                                         |       |        | Ŧ | Ē |          |
| Select clipped DEM (optional)                           |       |        |   |   |          |
|                                                         |       |        | - | 6 |          |
| Select file geodatabase to store output data            |       |        |   |   |          |
|                                                         |       |        |   |   |          |
|                                                         |       |        |   |   |          |
| Select Highest Annual Tide Stations layer               |       |        |   |   |          |
|                                                         |       |        | • | 2 |          |
| Select Highest Annual Tide Data Year                    |       |        |   |   |          |
| 2013<br>Water Level Above Highest Appual Tide Elevation |       |        |   | - |          |
|                                                         | 0     | Meters |   | • |          |
| Shoreland Zone buffer distance                          | -     |        |   |   |          |
|                                                         | 0     | Feet   |   | • |          |
| Output Highest Annual Tide polygon                      |       |        |   |   |          |
| Output Highest Annual Tide depths                       |       |        |   |   |          |
| Output Area of Tide Station Influence                   |       |        |   |   |          |
| Output Only Area of Tide Station Influence              |       |        |   |   |          |
| Outputs:                                                |       |        |   |   |          |
| UAT lines S7 buffers nelvanes and                       | racta | rc of  |   |   |          |
| nai mes, se puners, porygons, and                       | laste | 15 01  |   |   |          |
| potential inundation depths for diffe                   | erent |        |   |   |          |
| scenarios                                               |       |        |   |   |          |
|                                                         |       |        |   |   | <u> </u> |

OK

Cancel

Environments...

<< Hide Help

#### Highest Annual Tide

\_ 🗆 X

This tool allows for the delineation of a Highest Annual Tide line based upon a digital elevation dataset, the VDATUM outputs and Tide Station data. It can be run for specific geographic areas based upon a polygon extent layer or an already clipped DEM can be used to provide the elevation data. The tool uses the nearest or nearest selected Tide Station point to get the highest annual tide measured from mean low or lower water. This value is added to the mean low or lower water level below NAVD as defined by the VDATUM model. This water level is then applied in 200 meter grid cells across the analysis extent and subtracted from the DEM to yield the depth of water during the highest annual tide. The extent of the inundation is then determined by the raster cell values that are greater than zero. Optional outputs included a raster of water depths at highest annual tide, a polygon of the inundation extent and a layer showing the spatial influence of each of the tide station points. For further

Tool Help

-

# **Some Assumptions and Limitations**

- Our mapping differs from other states in that we use the Highest Annual Tide per Shoreland Zoning regulations, not MHHW. In Maine, the HAT is between 2-3 feet higher than the MHHW level. We are trying to both map the limits of existing HAT for Shoreland Zoning and visualize the impacts of SLR scenarios on potential wetland expansion and inundation, not necessarily map the actual limits of wetlands.
- We use a "bare earth" LiDAR DEM that represents a "snapshot" of topography that may have changed since the data was captured.
- Our simulations use a bathtub approach that doesn't account for erosion, sedimentation, or dynamic influences like freshwater flow or waves.

# **Some Assumptions and Limitations**

- In Maine, our LiDAR was flown at any tide so in some areas, LiDAR points were reflected by water (i.e., data collected at a higher tide), resulting in bad or no data in some areas.
- We use NOAA's VDATUM to convert from MLLW to NAVD88 to translate elevations across water surfaces. This helps adjust tidal predictions, but also adds additional vertical error (up to a published 13.2 cm per NOAA) to our datasets.
- Our state-wide analysis doesn't look at wetland type conversion or wetland loss on a state-wide level. This was done only in select areas for partner communities (Scarborough River marsh).

#### **NOAA - NOS Tidal Prediction Station Locations**

- 🚺 Highest\_Annual\_Tide
- vdatum\_points\_200m spacing

• 113 NOAA CO-OPs Tidal prediction stations along the Maine and New Hampshire coastlines.

• GIS used to create a grid of 200-m spaced points.

- NOAA VDATUM tool used to calculate (at each point) the separation between MLLW and NAVD88, creating "variability" in the water surface based on variability in the datums.
  - Data from each tidal station then interpolated along the coastline using VDATUM separations and HUC-10 watershed boundaries.



🚺 Highest\_Annval\_Tide

Coast Sec

The coastline was broken up into different segments for analysis. HUC-10 (Hydrologic Unit Code) 10 boundaries were used to help constrain watersheds.

udatim\_polits\_200m spacing



- HUC-10 boundary

## Portland Tidal Station

Example of VDATUM points on the water surfaces that were used to prediction values of tidal stations.

#### NOAA - NOS Tidal Prediction Station "Influence"



The tool uses a "nearest neighbor" interpolation scheme to capture VDATUM points nearest to different tidal stations, and then adjust each VDATUM point based on the tidal station value.

#### HUC-10 boundary

 $\bigcirc$ 

0

#### Portland Tidal Station

0

T

Ð

#### Initial HAT TOOL Output Comparisons

HAT\_Exist\_Coastwide

0.75

Once Area of Influence is deemed to be correct, the analysis is completed and the HAT Tool outputs a polygon of areas below the Highest Annual Tide, which can be used as a proxy for the existing marsh surface.

#### Initial HAT TOOL Output Comparisons

Sea, River, Ocean

0.75

HAT\_Exist\_Coastwide

The State's National Hydrography Dataset (NHD) was used to erase rivers, streams, and oceans, leaving only existing areas below HAT.



Similar analyses were completed for scenarios of 1, 2, 3.3, and 6 feet of sea level rise on top of the HAT. Each layer was used to "clip" the subsequent one to create

# A quick example of mapping results

Scarborough River Marsh, Scarborough (detailed)

Batson River, Goose Rocks Beach, Kennebunkport





0

250

500 Meters

Comparison with MNAP Mapping – "ground-truthing"



HAT Tool (Existing HAT)



### HAT Tool (Future Scenarios)

#### Initial HAT TOOL Output Comparisons



For general planning purposes only

500 Meters

## A detailed look: Scarborough Marsh



#### Potential Changes to Wetland Types (2012 6" base orthoimagery)

Low Marsh Existing

High Marsh Existing

For general planning purposes only.







#### Potential Changes to Wetland Types (2012 6" base orthoimagery)

Low Marsh + 6 ft SLR High Marsh + 6 ft SLR

> Conversion to open water

For general planning purposes only.





Take home point: Wetlands may convert to a low-marsh dominated system (high marsh expansion limited by steep sloped or developed uplands) and we may lose marsh to open water under higher scenarios.

## Phase II: MNAP's Statewide Mapping Analysis

1) MNAP completed updated statewide mapping of *existing coastal wetlands* using aerial-imagery, LiDAR interpretation, and ground-truthing

2) MNAP completed analysis of four Sea Level Rise Simulations

(1ft, 2ft, 3.3ft, & 6ft)

- where do we expect marsh migration?
- what land cover types will be affected?
- how much is conservation land?
- how much is freshwater wetland?



## Statewide Tidal Marsh Mapping (Existing Conditions)

### minimum mapping unit: ~ 2.5 ac (avg. width >60 ft)

\* fringing marsh is not included

Harrington

Result = 22,408 acres mapped

> - Sources Earl, Elipital Globs, Geo Eye, Foubled, US EA, US 63 , AEX, Geimapping, Aerogrid, JO N, IO P, swiestopo , and the GIS User Community
Using the HAT Tool, MGS mapped the limits of the existing HAT, and scenarios of 1, 2, 3.3, and 6 feet of SLR on top of the HAT.

Limits of existing HAT

Potential Wetland Expansion

MNAP then used this data to complete additional GIS analysis to inspect potential marsh migration areas on a statewide basis.

# Area of potentially inundated uplands which may become wetlands

Overall, including fringing areas



Existing Tidal Marsh Non-Estuarine Mask HAT plus 6ft SLR - Estuaries HAT plus 6ft SLR - Other areas

## Data filtering: Where is marsh migration *most likely* to occur?

3

00

Removed: "fringing" marsh areas non-estuarine areas

# Area of potentially inundated uplands which may become wetlands

Overall, including fringing areas
Excluding fringing areas



### What data is most relevant for planning?

How much is already conservation lands?

How much is developed vs not developed?

How much is freshwater wetlands?

Mousam River tidal marshes (Kennebunk)



#### Sea Level Rise Simulations: Acres on Conserved Lands versus Acres on Other Lands



**Conserved Lands – Coast wide** 

# Area of potentially inundated uplands which may become wetlands



With fringing areas and non-estuarine areas removed

#### Coast-wide Intersection of 4 SLR Simulations with NWI Wetlands and Uplands (Natural & Agricultural)



## **Summary Findings**

- Based on our state-wide analysis, there is some room for wetlands to migrate in response to SLR, though many existing wetlands are "at capacity" and limited by steep sloped uplands or development.
- For the most part, coastal wetlands will be migrating either into adjacent freshwater wetlands or currently "undeveloped" uplands (natural or agricultural). This accounts for about 90% in each scenario. The majority of "developed" land that might be impacted is made up of road networks.
- Results of our analyses are being used by MEDOT in a pilot FHWA project on infrastructure resiliency, by IF&W for updating the State Wildlife Action Plan, and by MCHT for conservation purposes.
- At the local level, partner POSM communities are using results to develop local adaptation strategies that work in their communities (i.e., increasing knowledge, comprehensive plan chapters, economic studies, climate change guidance documents). To do this, data had to be presented in GoogleEarth format, which was much easier for communities to work with.

## **Summary Findings**

- Our relatively simple GIS-based "bathtub" highest annual tide/sea level rise mapping is unique in that it supports regulatory (Shoreland Zoning) and future sea level rise planning purposes. We are different in using the HAT!
- Limiting factors in our analysis included a lack of accretion rate data, a lack of including the influence of freshwater flow on marsh migration, and lack of tidally controlled LiDAR data.
- What would we do differently? Compare our results with SLAMM in a pilot study area. Map the lower boundary movement and different marsh types, as possible, on a state-wide scale.
- *Next steps?* We will be releasing 2015 HAT mapping data through an online tool, in addition to the different sea level rise/marsh migration scenarios.
  - We anticipate moving forward with a change in Shoreland Zoning language to use the Highest Astronomical Tide instead of the Highest Annual Tide.
  - We are currently completing field ground-truthing using RTK-GPS of the tool's mapping results.

#### Modeling Marsh Migration in New Hampshire

## • Mechanics

○ **Products** 

• Opportunities

 $\circ$  Action

#### New Hampshire's Wildlife Action Plan



#### New Hampshire's Wildlife Action Plan





#### **Coastal Wetland Ecosystem Functions**

- Plant growth to support food webs
- Secondary production for wildlife
- Plant structure provides habitat
- Support of biodiversity
- Removal of sediments/nutrients
   Carbon storage

- Protection from flooding
- Protection from coastal erosion
- Aesthetic, Recreational & Educational values
- Self-sustaining ecosystems



### NH Planning Scenarios

### New Hampshire Coastal Risks & Hazards Commission

| Home                                                                                                                                                                                   | About          | Meetings         | Committees       | Working Groups            | CRHC Reports | Resour  | ces        | StormSmart Coasts                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|------------------|---------------------------|--------------|---------|------------|----------------------------------------|
| Archive                                                                                                                                                                                | Scien          | tific Advis      | ory Panel        |                           |              | ۳       | Sig        | n up for updates!                      |
| The S<br>Marc                                                                                                                                                                          | Scien<br>h 17. | tific Ad         | dvisory          | Panel will                | meet on      |         | You<br>En  | r email:<br>ter email address          |
| by Cathy Co                                                                                                                                                                            | letti on Marg  | ch 13, 2014 in M | eeting Announcen | ients, Scientific Advisor | ry Panel     |         |            | Subscribe                              |
| The Scientific Advisory Panel Meeting of the N.H. Coastal Risks and Hazards Commission will meet on March 17 from 10:30am-12:00pm at 320 Gregg Hall at the University of New Hampshire |                |                  |                  |                           |              | Тор     | bics       |                                        |
| in Durhan                                                                                                                                                                              | n, N.H. Vie    | ew the agenda    | 1.<br>1.         | orogg that at the or      |              | nponire | • G<br>• M | rant Proposal<br>leeting Announcements |
| Continue R                                                                                                                                                                             | eading 🗩 0     | )                |                  |                           |              |         | • S        | cientific Advisory Panel               |

- Steering Committee
- Uncategorized
- Working Groups



#### **NH Planning Scenarios**

#### SLR at 2100

#### Temporal Scale



0.5m (1.6ft), 1.2m (3.9ft), 2m (6.6ft)

2025, 2050, 2075, 2100

#### NH's Approach to SLAMM: Statewide data inputs



#### LiDAR based on 2011 data collection

### NH's Approach to SLAMM: Statewide data inputs



### NH's Approach to SLAMM: Statewide data inputs





| AND IN THE REAL      |                                    |                    |                     |            |                                  |                                |
|----------------------|------------------------------------|--------------------|---------------------|------------|----------------------------------|--------------------------------|
| Hampton-<br>Seabrook | Direct coast<br>line               | Harbor<br>entrance | Piscataqua<br>River | Little Bay | Great Bay                        | Tributaries                    |
| 1986                 | 1986,<br>northern tip<br>2001-2004 | 2001-2004          | 2001-2004           | 2001-2004  | Half 2001-<br>2004, half<br>1986 | Both 1986<br>and 2001-<br>2004 |





#### Please help us with your field knowledge



#### NH's Approach to SLAMM: Locally relevant input parameters



| Parameter                           | Global   |
|-------------------------------------|----------|
| Description                         | GreatBay |
| NWI Photo Date (YYYY)               | 2001     |
| DEM Date (YYYY)                     | 2011     |
| Direction Offshore [n,s,e,w]        | East     |
| Historic Trend (mm/yr)              | 1.76     |
| MTL-NAVD88 (m)                      | 0.067    |
| GT Great Diurnal Tide Range (m)     | 2.3      |
| Salt Elev. (m above MTL)            | 1.6      |
| Marsh Erosion (horz. m /yr)         | 1.8      |
| Swamp Erosion (horz. m /yr)         |          |
| T.Flat Erosion (horz. m /yr)        | .0       |
| RegFlood Marsh Accr (mm/yr)         | 4.3      |
| IrregFlood Marsh Accr (mm/yr)       | 4.3      |
| Tidal-Fresh Marsh Accr (mm/yr)      | 5.38     |
| Inland-Fresh Marsh Accr (mm/yr)     | (        |
| Mangro∨e Accr (mm/yr)               |          |
| Tidal Swamp Accr (mm/yr)            | 1.1      |
| Swamp Accretion (mm/yr)             | 0.3      |
| Beach Sed. Rate (mm/yr)             | 0.9      |
| Freq. Overwash (years)              | 50       |
| Use Ele∨ Pre-processor [True,False] | FALSE    |

#### Modeling Marsh Migration in New Hampshire





Modeling Marsh Migration in New Hampshire

Mapping products (quantitative to come)

○ Uncertainty Analysis



### Mapping Products

| Hama                                                                                                                                                                                          | About I            | NEW F                                                                                                                                                                                                                           | IAMPSHIRE'S STATI                                                                                                                                        | H GRANI<br>EWIDE GIS CLEARINGHO                                                                              |                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| DATA                                                                                                                                                                                          | Data 10            | 1 Download Free Data                                                                                                                                                                                                            | Order Da                                                                                                                                                 | ta Online Maps & Servic                                                                                      | res Man Library                                                                 |
| Search GRA<br>QUICK LINKS<br>Search Database u<br>Data Discovery Too<br>Layer List:<br>Alphabetical Order<br>Layer List:<br>Data Category<br>Tax Parcel Informat<br>GRANIT Data Ques<br>Login | NIT<br>using<br>ol | GRANIT Data Dis<br>You may search the GRAN<br>Search" for more options.<br>Note: Some GRANIT data<br>to all GRANIT data layers,<br>Search by theme keyword<br>AND/OR<br>Search by geography:<br><u>Clear selected geography</u> | SCOVERY TOOL<br>IT database by theme<br>layers are not available<br>use the Layer List Que<br>County<br>Vatershed<br>7.5 Minute Quad<br>Coastal Drainage | e keyword and/or geography us<br>le to download using the Data<br>lick Links on the left.<br>Advanced Search | sing the form below. Click "Advanced<br>Discovery Tool. For a listing of/access |
| Contact Us<br>GIS Event Ca<br>Decembe                                                                                                                                                         | lendar<br>r        |                                                                                                                                                                                                                                 | Search                                                                                                                                                   |                                                                                                              |                                                                                 |



### Mapping Products







Lat:

Lon:

Auckers Tr

2000ft

500m

Filter...

Freshwater wetland

Show Layers



#### **Confidence** Analysis





A. Based on National Elevation Dataset (NED)



B. Based on LiDAR data, which are more accurate



C. Large area of low confidence using NED



D. Smaller area of low confidence using LiDAR



Modeling Marsh Migration in New Hampshire

Mapping products (quantitative to come)
 Uncertainty Analysis

Restoration opportunities



#### **Restoration Opportunities**

(SLR 2m / 7ft)







#### **Restoration – Taylor River**



SLR 2m / 7ft







Tidal restriction in place

Tidal restriction removed



#### **Restoration – Taylor River**





Modeling Marsh Migration in New Hampshire

- Mapping products (quantitative to come)
  - Uncertainty Analysis
- Restoration opportunities
- Habitat quality and adaptation potential

### Modeling Marsh Migration in New Hampshire

- Mapping products (quantitative to come)
  - Uncertainty Analysis
- Restoration opportunities
- Habitat quality and adaptation potential
- Priority lands for conservation

#### Habitat Conditions and Adaptation Potential



### Salt Marsh Integrity Assessment Program in USFWS Region 5

SusanC. Adamowicz; Neckles, Hilary; Guntenspergen, Glenn; Shriver, Greg; Taylor, Jan

- Landscape scale components of SMI
- Natural Heritage data & bird species richness
- Potential to migrate inland (proximity to low lying undeveloped land)
### Habitat Conditions and Adaptation Potential

|            | ACRES       | Marsh Study Unit total area (acres)                                                  |  |  |  |  |
|------------|-------------|--------------------------------------------------------------------------------------|--|--|--|--|
|            | HECTARES    | Marsh Study Unit total area (hectares)                                               |  |  |  |  |
|            | WATER_HA    | Hectares of open water within the MSU (NHD derived)                                  |  |  |  |  |
| tion       | AQ_EDGE_M   | Meters of aquatic edge                                                               |  |  |  |  |
| X          | POSITION    | Landscape position: marine, middle-estuary, upper-estuary                            |  |  |  |  |
| -          | MORPHOLOGY  | Marsh shape: Marine fringe marsh, Narrow finge marsh, Wide fringe marsh, Salt-meadow |  |  |  |  |
|            | OW_Veg      | Ratio of open water to tidal emergent herbaceous wetland                             |  |  |  |  |
| 1          | DevPct150m  | Percent of the 150m buffer that is developed land cover (2011 NLCD)                  |  |  |  |  |
| k          | AgPct150m   | Percent of the 150m buffer that is agriculture (2011 NLCD)                           |  |  |  |  |
| 2          | NatPct150m  | Percent of the 150m buffer that is natural land cover (2011 NLCD)                    |  |  |  |  |
| -          | NatPct1km   | Percent of the 1 km buffer that is natural land cover (2011 NLCD)                    |  |  |  |  |
| 100        | BUF150M_HA  | Size of the 150m buffer in hectares                                                  |  |  |  |  |
| 14         | BUF1KM_HA   | Size of the 1km buffer in hectares                                                   |  |  |  |  |
|            | Dev150mRel  | Relative development = (DevPct150m / 100) * (BUF150M_HA / HECTARES)                  |  |  |  |  |
|            | Ag150m Rel  | Relative agriculture = (AgPct150m / 100) * (BUF150M_HA / HECTARES)                   |  |  |  |  |
|            | Nat150m Rel | Relative natural land cover = (NatPct150m / 100) * (BUF150M_HA / HECTARES)           |  |  |  |  |
|            | Nat1kmRel   | Relative natural land cover = (NatPct1km / 100) * (BUF1KM_HA / HECTARES)             |  |  |  |  |
| Se de      | BirdSpRich  | Species Richness of birds of conservation concern                                    |  |  |  |  |
| 3          | NatCommPct  | Percent of the Marsh Study Unit that is NHB-mapped natural community                 |  |  |  |  |
| The second | NatCommHa   | Hectares of the Marsh Study Unit that is NHB-mapped natural community                |  |  |  |  |
| ~3         | SM_UNIT     | Hectares of Salt Marsh in the Unit at time zero, initial conditions                  |  |  |  |  |
|            | SM_CONTIG   | Contiguous Hectares of Salt Marsh that intersects the Unit at time zero              |  |  |  |  |
| 4          | SM_05M      | Hectares of Salt Marsh predicted by SLAMM at year 2100 with 0.5m SLR                 |  |  |  |  |

#### Habitat Conditions and Adaptation Potential



Marsh Study Units – easily transferable methodology

- External boundary defined by maximum extent SLAMM model at 2m SLR
- Internal

- Center line major rivers and roads
- Natural breaks in salt marsh continuity along shore



#### **Conservation Opportunities to Support Marsh Migration Inland**











#### **Conservation Opportunities to Support Marsh Migration Inland**











#### **Conservation Opportunities to Support Marsh Migration Inland**









#### **Conservation Opportunities to Support Marsh Migration Inland**







#### **Conservation Opportunities to Support Marsh Migration Inland**

800 LAFATETTE 3.0

A-AY. LRD

7-894





Tiered prioritizationStatewide comparison





### Field Verification





### Field Verification

# Workshop for land protection professionals. Feb 2015

### Modeling Marsh Migration in New Hampshire

- Mapping products (quantitative to come)
  - Uncertainty Analysis
- Restoration opportunities
- Habitat quality and adaptation potential
- Priority conservation lands
- $\circ$  Demonstration sites





#### Great Bay NERR System-Wide Monitoring Program/Habitat Mapping & Characterization





### High / Low Marsh boundary















#### Modeling Marsh Migration in New Hampshire



○ Products

Opportunities

Action

- 34

#### NWI Update





ONAL ESTUARINE RESEARCH RESERVE GREAT BAY NAT

### NH's Approach to SLAMM: Locally relevant input parameters



| C |  |
|---|--|

#### Locally relevant, statistically robust

| Parameter        |                      | Global   |
|------------------|----------------------|----------|
|                  |                      | GreatBay |
|                  | YY)                  | 2001     |
|                  |                      | 2011     |
|                  | ,s,e,w]              | East     |
|                  | (r)                  | 1.76     |
|                  |                      | 0.067    |
|                  | le Range (m)         | 2.3      |
|                  | MTL)                 | 1.61     |
| -                | . m /yr)             | 1.8      |
|                  | z. m /yr)            | 1        |
|                  | m /yr)               | 0.5      |
|                  | ccr (mm/yr)          | 4.3      |
|                  | ccr (mm/yr)          | 4.3      |
| vant,            | ccr (mm/yr)          | 5.38     |
|                  | Accr (mm/yr)         | 0        |
| obust            | (yr)                 | 7        |
|                  | nm/yr)               | 1.1      |
|                  | m/yr)                | 0.3      |
|                  | m/yr)                | 0.5      |
| Freq. Overwash   | 50                   |          |
| Use Elev Pre-pro | ocessor [True.False] | FALSE    |



#### Local Water Level Data







#### Local Water Level Data







#### SETs





### Connecting to NSRS





### Connecting to NSRS

| non      |                          |                                               |                   | OPUS    | : Online Po         | siti | oning User Service                          |
|----------|--------------------------|-----------------------------------------------|-------------------|---------|---------------------|------|---------------------------------------------|
|          |                          |                                               |                   |         |                     |      | National Geodetic Survey                    |
| NGS Home | About NGS                | Data & Imagery                                | Tools             | Surveys | Science & Education | n    |                                             |
|          |                          |                                               |                   |         |                     |      | Browse map to locate and access datasheets. |
| EX       | P Gr<br>Strathan<br>eter | eat Bay<br>Greenlar<br>95<br>North<br>Hamptor | Port<br>nd<br>1 R | smouth  |                     |      |                                             |

#### Modeling Marsh Migration in New Hampshire





#### **Resilient New Hampshire Coasts**





**Resilient New Hampshire Coasts** 



• 4 municipalities

### **Resilient New Hampshire Coasts**



- Priority lands for conservation
- Restoration opportunities

#### **Resilient New Hampshire Coasts**



• Priority lands for conservation

- Restoration opportunities
- Infrastructure mitigation / planning
- Policy buffers



#### **Mapping Products**





#### **Mapping Products**



🔺 🖿 💸 🛱 al 🕪

12/1/2014



#### Mapping Products



www.greatbay.org

12/1/2014



#### **Mapping Products**









Rockingham Planning Commission



• 37 municipalities



# Rockingham Planning Commission



## FROM TIDES TO STORMS: PREPARING FOR NEW HAMPSHIRE'S FUTURE COAST

Assessing Risk and Vulnerability of Coastal Communities to Sea Level Rise and Storm Surge

Seabrook - Hampton Falls – Hampton - North Hampton – Rye - New Castle - Portsmouth

- Mapping products
- Statistical assessment acreages of change
- Lot assessed values

# 

### Modeling Marsh Migration in New Hampshire







Locally relevant, statistically robust








# **Example Infrastructure**





## **Buffers – horizontal**





### **Buffers - vertical**





# **Buffers**





# **Buffers – horizontal change over time (100ft)**



2012



# **Buffers – horizontal change over time (100ft)**



2050



# Buffers – horizontal change over time (100ft)



2100

